• Title/Summary/Keyword: sensor density

Search Result 601, Processing Time 0.038 seconds

Implementation of a Residual Quantity Monitoring System in a Liquefied Gas Storage Tank based on Wireless Sensor Network Technology (무선센서 네트워크 기술 기반 액화가스 저장탱크 내 잔량 모니터링 시스템 구현)

  • Kim, Min-Kyu;Han, Hae-Jin;Han, Jaehwan
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.352-356
    • /
    • 2018
  • This paper relates to a technology for monitoring a liquefied gas storage tank in the special gas field where demand is increasing owing to the continuous growth of related fields such as the semiconductor, display, and ICT convergence electronics industries. We have proposed a system for real - time monitoring using wireless sensor network technology, and implemented a system consisting of a sensor unit, transmitter module, and receiver module to be attached to a liquefied gas storage tank. The system was applied to LCO2 tanks among various liquefied gas storage tanks to verify the feasibility. The storage tanks employed in the experiments has capacities of 16,179 l and was 1,920 mm in inner diameter. Furthermore, the density was 1.03 g/l. The measured data were compared with reference data on the remaining gas level versus the $CO_2$ height of the surface, expressed using a conventional water meter, provided by an existing storage tank supplier. The experimental results show that the data is similar to the standard data provided by the tank supplier, and has a high accuracy and reliability within an error range of 0.03%.

Dynamic-size Multi-hop Clustering Mechanism in Sensor Networks (센서 네트워크에서의 동적 크기 다중홉 클러스터링 방법)

  • Lim, Yu-Jin;Ahn, Sang-Hyun
    • The KIPS Transactions:PartC
    • /
    • v.12C no.6 s.102
    • /
    • pp.875-880
    • /
    • 2005
  • One of the most important issues in the sensor network with resource-constrained sensor nodes is prolonging the network lifetime by efficiently utilizing the given energy of nodes. The most representative mechanism to achieve a long-lived network is the clustering mechanism. In this paper, we propose a new dynamic-size multi-hop clustering mechanism in which the burden of a node acting as a cluster head(CH) is balanced regardless of the density of nodes in a sensor network by adjusting the size of a cluster based on the information about the communication load and the residual energy of the node and its neighboring nodes. We show that our proposed scheme outperforms other single-hop or fixed-size multi-hop clustering mechanisms by carrying out simulations.

Influence of imperfection on the smart control frequency characteristics of a cylindrical sensor-actuator GPLRC cylindrical shell using a proportional-derivative smart controller

  • Zare, Reza;Najaafi, Neda;Habibi, Mostafa;Ebrahimi, Farzad;Safarpour, Hamed
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.469-480
    • /
    • 2020
  • This is the first research on the smart control and vibration analysis of a Graphene nanoplatelets (GPLs) Reinforced Composite (GPLRC) porous cylindrical shell covered with piezoelectric layers as sensor and actuator (PLSA) in the framework of numerical based Generalized Differential Quadrature Method (GDQM). The stresses and strains are obtained using the First-order Shear Deformable Theory (FSDT). Rule of the mixture is employed to obtain varying mass density and Poisson's ratio, while the module of elasticity is computed by modified Halpin-Tsai model. The external voltage is applied to sensor layer and a Proportional-Derivative (PD) controller is used for sensor output control. Governing equations and boundary conditions of the GPLRC cylindrical shell are obtained by implementing Hamilton's principle. The results show that PD controller, length to radius ratio (L/R), applied voltage, porosity and weight fraction of GPL have significant influence on the frequency characteristics of a porous GPLRC cylindrical shell. Another important consequence is that at the lower value of the applied voltage, the influence of the smart controller on the frequency of the micro composite shell is much more significant in comparison with the higher ones.

Fabrication and Characteristics of High-sensitivity Si Hall Sensors for High-temperature Applications (고온용 고감도 실리콘 홀 센서의 제작 및 특성)

  • 정귀상;노상수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.565-568
    • /
    • 2000
  • This paper describes on the temperature characteristics of a SDB(silicon-wafer direct bonding) SOI(silicon-on-insulator) Hall sensor. Using the buried oxide $SiO_2$ as a dielectrical isolation layer, a SDB SOI Hall sensor without pn junction isolation has been fabricated on the Si/$SiO_2$/Si structure. The Hall voltage and the sensitivity of the implemented SOI Hall sensor show good linearity with respect to the applied magnetic flux density and supplied current. In the temperature range of 25 to $300^{\circ}C$, the shifts of TCO(temperature coefficient of the offset voltage) and TCS(temperature coefficient of the product sensitivity) are less than $\pm 6.7$$\times$$10^{-3}$/$^{\circ}C$ and $\pm 8.2$$\times$$10^{-4}$/$^{\circ}C$respectively. These results indicate that the SDB SOI structure has potential for the development of a silicon Hall sensor with a high-sensitivity and hip high-temperature operation.

  • PDF

A cluster head replacement based on threshold in the Internet of Things (사물인터넷에서 임계치 기반의 클러스터 헤드 교체 기법)

  • Kim, Jeong-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.11
    • /
    • pp.1241-1248
    • /
    • 2014
  • An efficient battery usage of sensor nodes is main goal in a sensor network, which is the substructure of Internet of Things. Maximizing the battery usage of sensor nodes makes the lifetime of sensor network increase as well as the reliability of the network improved. The previous solutions to solve these problems are mainly focused on the cluster head selection based on the remaining energy. In this paper, we consider both the head selection and the replacement interval which is determined by a threshold that is based on the remaining energy, density of alive nodes, and location. Our simulation results show that the proposed scheme has outstanding contribution in terms of maximizing the life time of the network and balancing energy consumption of all nodes.

A study of DSC using Ultrasonic and Thermal treatment on Photo-Electrode (염료감응형 태양전지 광전극 초음파 열처리에 관한 연구)

  • Hong, Ji-Tae;Kim, Mi-Jeong;Sim, Ji-Yong;Seo, Hyun-Woong;Kim, Hee-Je
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1291-1292
    • /
    • 2007
  • Recently, there were many researches for efficiency improvement of DSC. Among of these works, research of surface treatment is still a prerequisite for electron diffusion, light-harvesting and surface state of DSC.[1] Using of the surface treatment, it can be raise up porosity of $TiO_2$ nano-crystalline structure on photo-electrode. There are chemical, physical, electrical and optical methods which raise up its porosity. In this paper, we have designed and manufactured MOPA-type ultrasonic circuit (100W, frequency and duty variable). Manufactured ultrasonic circuit to use to force cavity density and power into $TiO_2$ paste. Then, we have optimized forcing time, frequency and duty of ultrasonic irradiation for surface treatment of photo-electrode of DSC. In I-V characteristic test of DSC, ultrasonic and thermal treated DSC shows 19% improved its efficiency against monolithic DSC. And it shows stability of light-harvesting from drastically change of light irradiation test.

  • PDF

An approach for optimal sensor placement based on principal component analysis and sensitivity analysis under uncertainty conditions

  • Beygzadeh, Sahar;Torkzadeh, Peyman;Salajegheh, Eysa
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.1
    • /
    • pp.59-80
    • /
    • 2022
  • In the present study, the objective is to detect the structural damages using the responses obtained from the sensors at the optimal location under uncertainty conditions. Reducing the error rate in damage detection process due to responses' noise is an important goal in this study. In the proposed algorithm for optimal sensor placement, the noise of responses recorded from the sensors is initially reduced using the principal component analysis. Afterward, the optimal sensor placement is obtained by the damage detection equation based sensitivity analysis. The sensors are placed on degrees of freedom corresponding to the minimum error rate in structural damage detection through this procedure. The efficiency of the proposed method is studied on a truss bridge, a space dome, a double-layer grid as well as a three-story experimental frame structure and the results are compared. Moreover, the performance of the suggested method is compared with three other algorithms of Average Driving Point Residue (ADPR), Effective Independence (EI) method, and a mass weighting version of EI. In the examples, young's modulus, density, and cross-sectional areas of the elements are considered as uncertainty parameters. Ultimately, the results have demonstrated that the presented algorithm under uncertainty conditions represents a high accuracy to obtain the optimal sensor placement in the structures.

An Estimation on the Stability of W/O Type Emulsified Fuel Using by Capacitance Sensor (정전용량센서를 이용한 W/O형 유화연료의 안정성 평가)

  • Cho, Seong-Cheol;Oh, Yang-Hwan;Im, Seok-Yeon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.95-101
    • /
    • 2011
  • We estimated on the stability of W/O type emulsified fuel using by capacitance sensor, so it concluded the following conclusions. For the first 24 hours, prepared emulsified fuel reveals phase separation ratio of 5%, maintains stable status which verifies the stability of emulsified fuel. Adding more water increases the phase separation ratio rapidly, and adding more surfactant displays stable emulsification. Adding water causes larger size of water droplet diameter, and adding surfactant mixture causes smaller size of water droplet diameter. In conclusion, the size of W/O type emulsified fuel water droplet diameter is directly related to the volume of surfactant, and density of water droplet diameter changes thedistribution according to water contents.

Anomaly Detection in Medical Wireless Sensor Networks

  • Salem, Osman;Liu, Yaning;Mehaoua, Ahmed
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.4
    • /
    • pp.272-284
    • /
    • 2013
  • In this paper, we propose a new framework for anomaly detection in medical wireless sensor networks, which are used for remote monitoring of patient vital signs. The proposed framework performs sequential data analysis on a mini gateway used as a base station to detect abnormal changes and to cope with unreliable measurements in collected data without prior knowledge of anomalous events or normal data patterns. The proposed approach is based on the Mahalanobis distance for spatial analysis, and a kernel density estimator for the identification of abnormal temporal patterns. Our main objective is to distinguish between faulty measurements and clinical emergencies in order to reduce false alarms triggered by faulty measurements or ill-behaved sensors. Our experimental results on both real and synthetic medical datasets show that the proposed approach can achieve good detection accuracy with a low false alarm rate (less than 5.5%).

Modified PZT System for Pyroelectric IR Sensor (Modified PZT계 초전형 적외선 센서개발)

  • 황학인;박준식;오근호
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.8
    • /
    • pp.863-870
    • /
    • 1996
  • Fabricated modified PZT system for pyroelectric IR sensor were analyzed and characterized for dielectric piezoelectric and pyroelectric properties. Particle size and distribution of source powders were controlled by attrition milling process. 0.05PSS+yPT+(0.95-y)PZ+0.4 wt%MnO2 system was fabricated and investigated sintering density crystal structure and micro-structure through sintering conditions sintering temperature and sintering atmosphere. The poled sintered system of y=0.11 showed the lowest dielectric constant. The dielectric constants were increased with increasing y-mole ratio. The pyroelectric properties of modified PZT systems which were assembled to TO-5 package were measured by IR measurement system average out-voltage of 0.05PSS+0.1PT+0.84PZ+ wt%MnO2 was 3V.

  • PDF