• Title/Summary/Keyword: sensitivity-based model updating

Search Result 54, Processing Time 0.019 seconds

Sensitivity-based Damage detection in deep water risers using modal parameters: numerical study

  • Min, Cheonhong;Kim, Hyungwoo;Yeu, Taekyeong;Hong, Sup
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.315-334
    • /
    • 2015
  • A main goal of this study is to propose a damage detection technique to detect and localize damages of a top-tensioned riser. In this paper, the top-tensioned finite element (FE) model is considered as an analytical model of the riser, and a vibration-based damage detection method is proposed. The present method consists of a FE model updating and damage index method. In order to accomplish the goal of this study, first, a sensitivity-based FE model updating method using natural frequencies and zero frequencies is introduced. Second, natural frequencies and zero frequencies of the axial mode on the top-tensioned riser are estimated by eigenvalue analysis. Finally, the locations and severities of the damages are estimated from the damage index method. Three numerical examples are considered to verify the performance of the proposed method.

Finite element model updating of long-span cable-stayed bridge by Kriging surrogate model

  • Zhang, Jing;Au, Francis T.K.;Yang, Dong
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.157-173
    • /
    • 2020
  • In the finite element modelling of long-span cable-stayed bridges, there are a lot of uncertainties brought about by the complex structural configuration, material behaviour, boundary conditions, structural connections, etc. In order to reduce the discrepancies between the theoretical finite element model and the actual static and dynamic behaviour, updating is indispensable after establishment of the finite element model to provide a reliable baseline version for further analysis. Traditional sensitivity-based updating methods cannot support updating based on static and dynamic measurement data at the same time. The finite element model is required in every optimization iteration which limits the efficiency greatly. A convenient but accurate Kriging surrogate model for updating of the finite element model of cable-stayed bridge is proposed. First, a simple cable-stayed bridge is used to verify the method and the updating results of Kriging model are compared with those using the response surface model. Results show that Kriging model has higher accuracy than the response surface model. Then the method is utilized to update the model of a long-span cable-stayed bridge in Hong Kong. The natural frequencies are extracted using various methods from the ambient data collected by the Wind and Structural Health Monitoring System installed on the bridge. The maximum deflection records at two specific locations in the load test form the updating objective function. Finally, the fatigue lives of the structure at two cross sections are calculated with the finite element models before and after updating considering the mean stress effect. Results are compared with those calculated from the strain gauge data for verification.

Simultaneous identification of damage in bridge under moving mass by Adjoint variable method

  • Mirzaee, Akbar;Abbasnia, Reza;Shayanfar, Mohsenali
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.449-467
    • /
    • 2018
  • In this paper, a theoretical and numerical study on bridge simultaneous damage detection procedure for identifying both the system parameters and input excitation mass, are presented. This method is called 'Adjoint Variable Method' which is an iterative gradient-based model updating method based on the dynamic response sensitivity. The main advantage of proposed method is inclusion of an analytical method to augment the accuracy and speed of the solution. Moving mass is a model which takes into account the inertia effects of the vehicle. This interaction model is a time varying system and proposed method is capable of detecting damage in this variable system. Robustness of proposed method is illustrated by correctly detection of the location and extension of predetermined single, multiple and random damages in all ranges of speed and mass ratio of moving vehicle. A comparison study of common sensitivity and proposed method confirms its efficiency and performance improvement in sensitivity-based damage detection methods. Various sources of errors including the effects of measurement noise and initial assumption error in stability of method are also discussed.

Damage detection using finite element model updating with an improved optimization algorithm

  • Xu, Yalan;Qian, Yu;Song, Gangbing;Guo, Kongming
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.191-208
    • /
    • 2015
  • The sensitivity-based finite element model updating method has received increasing attention in damage detection of structures based on measured modal parameters. Finding an optimization technique with high efficiency and fast convergence is one of the key issues for model updating-based damage detection. A new simple and computationally efficient optimization algorithm is proposed and applied to damage detection by using finite element model updating. The proposed method combines the Gauss-Newton method with region truncation of each iterative step, in which not only the constraints are introduced instead of penalty functions, but also the searching steps are restricted in a controlled region. The developed algorithm is illustrated by a numerically simulated 25-bar truss structure, and the results have been compared and verified with those obtained from the trust region method. In order to investigate the reliability of the proposed method in damage detection of structures, the influence of the uncertainties coming from measured modal parameters on the statistical characteristics of detection result is investigated by Monte-Carlo simulation, and the probability of damage detection is estimated using the probabilistic method.

A Study on the F.E. Model Updating and Optimization for Vehicle Subframe (차량 서브프레임의 유한요소 모델의 개선 및 최적화에 대한 연구)

  • 허덕재;이근수;홍석윤;박태원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.220-227
    • /
    • 2002
  • This paper describes an integrated approach process to carry out pre-test, model correlation and updating analysis on the sub-frame of a vehicle. In this study, it was found that the modal test could be more efficient when the exciting point was selected on the area with high driving point residue. Such area could be located with the aid of finite element modal analysis. The model correlation was appraised in conjunction with the modal parameters between modal test and finite elements analysis. Also, the finite element model updating was obtained the good resultant using the iteration method based on sensitivity analysis results that carried out the variation of natural frequencies and MAC for the material properties. Finally, optimization of vehicle subframe was carried out the analysis of core location and physical properties by tow steps.

Numerical and experimental verifications on damping identification with model updating and vibration monitoring data

  • Li, Jun;Hao, Hong;Fan, Gao;Ni, Pinghe;Wang, Xiangyu;Wu, Changzhi;Lee, Jae-Myung;Jung, Kwang-Hyo
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.127-137
    • /
    • 2017
  • Identification of damping characteristics is of significant importance for dynamic response analysis and condition assessment of structural systems. Damping is associated with the behavior of the energy dissipation mechanism. Identification of damping ratios based on the sensitivity of dynamic responses and the model updating technique is investigated with numerical and experimental investigations. The effectiveness and performance of using the sensitivity-based model updating method and vibration monitoring data for damping ratios identification are investigated. Numerical studies on a three-dimensional truss bridge model are conducted to verify the effectiveness of the proposed approach. Measurement noise effect and the initial finite element modelling errors are considered. The results demonstrate that the damping ratio identification with the proposed approach is not sensitive to the noise effect but could be affected significantly by the modelling errors. Experimental studies on a steel planar frame structure are conducted. The robustness and performance of the proposed damping identification approach are investigated with real measured vibration data. The results demonstrate that the proposed approach has a decent and reliable performance to identify the damping ratios.

Vibration Analysis of HDD Actuator with Equivalent Finite Element Model of VCM Coil

  • Kim, Dong-Woohn;Lee, Jin-Koo;Park, No-Cheol;Park, Young-Pil
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.679-690
    • /
    • 2003
  • As the rate of increase in areal density of the HDD has accelerated, dynamic characteristics of the HDD actuator need to be improved with respect to the performance of the tracking servo and shock transmission. Therefore, it is important to analyze the vibration characteristic of the HDD actuator that consists of the VCM part, E-block and pivot bearing. In this paper, vibration modes of the HDD actuator are investigated the using finite element and experimental modal analyses methods. To develop a detailed finite element model, finite element models of each components of the actuator assembly are constructed and tuned to the results of the EMA. The VCM coil is modeled as an equivalent finite element model that has an orthotropic material property using auto-model updating program. Auto-model updating program with improved sensitivity based iterative method is applied to build a detailed finite element model using the result of the EMA. A detailed finite element model of the HDD actuator is then constructed and analyzed.

Hybrid vibro-acoustic model reduction for model updating in nuclear power plant pipeline with undetermined boundary conditions

  • Hyeonah Shin;Seungin Oh;Yongbeom Cho;Jinyoung Kil;Byunyoung Chung;Jinwon Shin;Jin-Gyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3491-3500
    • /
    • 2024
  • In this work, the hybrid vibro-acoustic model reduction technique that is a physical-modal combined formulation is proposed to accelerate the finite element model updating process of the vibro-acoustic pipeline system. Particularly, the new formulation could provide an effective way of the model updating by preserving the physical DOFs for the direct calibration of the undetermined boundary conditions. The sensitivity based vibro-acoustic model updating is first conducted, and then the undetermined spring constant at the displacement boundary condition is then directly and effectively calibrated by using the proposed hybrid model reduction formulation. The proposed method is implemented in the real nuclear facility to evaluate its performance. In addition, an experimental implementation test using the inverse force identification process is also conducted to demonstrate the reliability of the generated vibro-acoustic FE model through the proposed method.

Simultaneous identification of moving loads and structural damage by adjoint variable

  • Abbasnia, Reza;Mirzaee, Akbar;Shayanfar, Mohsenali
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.871-897
    • /
    • 2015
  • This paper presents a novel method based on sensitivity of structural response for identifying both the system parameters and input excitation force of a bridge. This method, referred to as "Adjoint Variable Method", is a sensitivity-based finite element model updating method. The computational cost of sensitivity analyses is the main concern associated with damage detection by these methods. The main advantage of proposed method is inclusion of an analytical method to augment the accuracy and speed of the solution. The reliable performance of the method to precisely indentify the location and intensity of all types of predetermined single, multiple and random damages over the whole domain of moving vehicle speed is shown. A comparison study is also carried out to demonstrate the relative effectiveness and upgraded performance of the proposed method in comparison to the similar ordinary sensitivity analysis methods. Moreover, various sources of error including the effects of noise and primary errors on the numerical stability of the proposed method are discussed.

Nondestructive Evaluation of Railway Bridge by System Identification Using Field Vibration Measurement

  • Ho, Duc-Duy;Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.6
    • /
    • pp.527-538
    • /
    • 2010
  • This paper presents a nondestructive evaluation approach for system identification (SID) of real railway bridges using field vibration test results. First, a multi-phase SID scheme designed on the basis of eigenvalue sensitivity concept is presented. Next, the proposed multi-phase approach is evaluated from field vibration tests on a real railway bridge (Wondongcheon bridge) located in Yangsan, Korea. On the steel girder bridge, a few natural frequencies and mode shapes are experimentally measured under the ambient vibration condition. The corresponding modal parameters are numerically calculated from a three-dimensional finite element (FE) model established for the target bridge. Eigenvalue sensitivities are analyzed for potential model-updating parameters of the FE model. Then, structural subsystems are identified phase-by-phase using the proposed model-updating procedure. Based on model-updating results, a baseline model and a nondestructive evaluation of test bridge are identified.