• Title/Summary/Keyword: sensitivity to damage

Search Result 487, Processing Time 0.022 seconds

A two-stage structural damage detection method using dynamic responses based on Kalman filter and particle swarm optimization

  • Beygzadeh, Sahar;Torkzadeh, Peyman;Salajegheh, Eysa
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.593-607
    • /
    • 2022
  • To solve the problem of detecting structural damage, a two-stage method using the Kalman filter and Particle Swarm Optimization (PSO) is proposed. In this method, the first PSO population is enhanced using the Kalman filter method based on dynamic responses. Due to noise in the sensor responses and errors in the damage detection process, the accuracy of the damage detection process is reduced. This method proposes a novel approach for solve this problem by integrating the Kalman filter and sensitivity analysis. In the Kalman filter, an approximate damage equation is considered as the equation of state and the damage detection equation based on sensitivity analysis is considered as the observation equation. The first population of PSO are the random damage scenarios. These damage scenarios are estimated using a step of the Kalman filter. The results of this stage are then used to detect the exact location of the damage and its severity with the PSO algorithm. The efficiency of the proposed method is investigated using three numerical examples: a 31-element planer truss, a 52-element space dome, and a 56-element space truss. In these examples, damage is detected for several scenarios in two states: using the no noise responses and using the noisy responses. The results show that the precision and efficiency of the proposed method are appropriate in structural damage detection.

A novel sensitivity method to structural damage estimation in bridges with moving mass

  • Mirzaee, Akbar;Shayanfar, Mohsenali;Abbasnia, Reza
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1217-1244
    • /
    • 2015
  • In this research a theoretical and numerical study on a bridge damage detection procedure is presented based on vibration measurements collected from a set of accelerometers. This method, referred to as "Adjoint Variable Method", is a sensitivity-based finite element model updating method. The approach relies on minimizing a penalty function, which usually consists of the errors between the measured quantities and the corresponding predictions attained from the model. Moving mass is an interactive model and includes inertia effects between the model and mass. This interactive model is a time varying system and the proposed method is capable of detecting damage in this variable system. Robustness of the proposed method is illustrated by correct detection of the location and extension of predetermined single, multiple and random damages in all ranges of speed and mass ratio of moving vehicle. A comparative study on common sensitivity and the proposed method confirms its efficiency and performance improvement in sensitivity-based damage detection methods. In addition various possible sources of error, including the effects of measurement noise and initial assumption error in stability of method are also discussed.

Sensitivity analysis of mechanical behaviors for bridge damage assessment

  • Miyamoto, Ayaho;Isoda, Satoshi
    • Structural Engineering and Mechanics
    • /
    • v.41 no.4
    • /
    • pp.539-558
    • /
    • 2012
  • The diagnosis of bridge serviceability is carried out by a combination of in-situ visual inspection, static and dynamic loading tests and analyses. Structural health monitoring (SHM) using information technology and sensors is increasingly being used for providing a better estimate of structural performance characteristics rather than above traditional methods. Because the mechanical behavior of bridges with various kinds of damage can not be made clear, it is very difficult to estimate both the damage mode and degree of damage of existing bridges. In this paper, the sensitivity of both static and dynamic behaviors of bridges are studied as a measure of damage assessment through experiments on model bridges induced with some specified artificial damages. And, a method of damage assessment of bridges based on those behaviors is discussed in detail. Finally, based on the results, a possible application for structural health monitoring systems for existing bridges is also discussed.

Analysis of a Structural Damage Detection using the Change of Dynamic Characteristics (동특성 변화를 이용한 구조물의 손상 탐지 해석)

  • 이정윤;이정우;이준호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.760-763
    • /
    • 2003
  • This study proposed the analysis of damage defection due to the change of the stiffness of structure by using the original and modified dynamic characteristics. The method is applied to examples of a cantilever and 3 degree of freedom by modifying the stiffness. The predicted damage detections are in good agreement with these from the structural reanalysis using the modified stiffness.

  • PDF

A Study on the Real-Time Risk Analysis of Heavy-Snow according to the Characteristics of Traffic and Area (교통과 지역의 특성에 따른 대설의 실시간 피해 위험도 분석 연구)

  • KwangRim, Ha;YongCheol, Jung;JinYoung, Yoo;JunHee, Lee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.6
    • /
    • pp.77-93
    • /
    • 2022
  • In this study, we present an algorithm that analyzes the risk by reflecting regional characteristics for factors affected by direct and indirect damage from heavy-snow. Factors affected by heavy-snow damage by 29 regions are selected as influencing variables, and the concept of sensitivity is derived through the relationship with the amount of damage. A snow damage risk prediction model was developed using a machine learning (XGBoost) algorithm by setting weather conditions (snow cover, humidity, temperature) and sensitivity as independent variables, and setting the risk derived according to changes in the independent variables as dependent variables.

Structural damage detection including the temperature difference based on response sensitivity analysis

  • Wei, J.J.;Lv, Z.R.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.249-260
    • /
    • 2015
  • Damage detection based on a reference set of measured data usually has the problem of different environmental temperature in the two sets of measurements, and the effect of temperature difference is usually ignored in the subsequent model updating. This paper attempts to identify the structural damage including the temperature difference with artificial measurement noise. Both local damages and the temperature difference are identified in a gradient-based model updating method based on dynamic response sensitivity. The sensitivities of dynamic response with respect to the system parameters and temperature difference are calculated by direct integration method. The measured dynamic responses of the structure from two different states are used directly to identify the structural local damages and the temperature difference. A single degree-of-freedom mass-spring system and a planar truss structure are studied to illustrate the effectiveness of the proposed method.

Vibration fatigue prediction using design sensitivity analysis (설계 민감도 해석을 활용한 진동내구 예측방법 연구)

  • Kim, Chan-Jung;Ju, Hyung-Jun;Shin, Sung-Young;Kwon, Sung-Jin;Lee, Bong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.488-493
    • /
    • 2011
  • Authors previously suggested the design sensitivity analysis based on transmissibility function and identified the sensitivity of measured point over the small modification of system dynamics. On the other hand, the acceleration data will not reveal the strain information at the same location and authors suggested energy isoclines that successfully predict the fatigue damage on the interesting location to overcome the drawback of acceleration over fatigue society. Both of methodologies, sensitivity analysis and fatigue damage prediction, commonly use the response acceleration response as main indicator. In this paper, authors investigate the advanced method of vibration fatigue prediction using design sensitivity analysis to enhance the accuracy of predicted accumulated fatigue. Uni-axial vibration testing is performed with finite element model of a simple notched specimen and the prediction of fatigue damage at notched location is conducted for accelerations at different measurement locations that show different sensitivity contribution, either.

  • PDF

Damage identification of vehicle-track coupling system from dynamic responses of moving vehicles

  • Zhu, Hong-Ping;Ye, Ling;Weng, Shun;Tian, Wei
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.677-686
    • /
    • 2018
  • The structural responses are often used to identify the structural local damages. However, it is usually difficult to gain the responses of the track, as the sensors cannot be installed on the track directly. The vehicles running on a track excite track vibration and can also serve as response receivers because the vehicle dynamic response contains the vibration information of the track. A damage identification method using the vehicle responses and sensitivity analysis is proposed for the vehicle-track coupling system in this paper. Different from most damage identification methods of vehicle-track coupling system, which require the structural responses, only the vehicle responses are required in the proposed method. The local damages are identified by a sensitivity-based model updating process. In the vehicle-track coupling system, the track is modeled as a discrete point supported Euler-Bernoulli beam, and two vehicle models are proposed to investigate the accuracy and efficiency of damage identification. The measured track irregularity is considered in the calculation of vehicle dynamic responses. The measurement noises are also considered to study their effects to the damage identification results. The identified results demonstrate that the proposed method is capable to identify the local damages of the track accurately in different noise levels with only the vehicle responses.

Experimental validation of dynamic based damage locating indices in RC structures

  • Fayyadh, Moatasem M.;Razak, Hashim Abdul
    • Structural Engineering and Mechanics
    • /
    • v.84 no.2
    • /
    • pp.181-206
    • /
    • 2022
  • This paper presents experimental modal analysis and static load testing results to validate the accuracy of dynamic parameters-based damage locating indices in RC structures. The study investigates the accuracy of different dynamic-based damage locating indices compared to observed crack patterns from static load tests and how different damage levels and scenarios impact them. The damage locating indices based on mode shape curvature and mode shape fourth derivate in their original forms were found to show anomalies along the beam length and at the supports. The modified forms of these indices show higher sensitivity in locating single and multi-cracks at different damage scenarios. The proposed stiffness reduction index shows good sensitivity in detecting single and multi-cracks. The proposed anomalies elimination procedure helps to remove the anomalies along the beam length. Also, the adoption of the proposed weighting method averaging procedure and normalization procedure help to draw the overall crack pattern based on the adopted set of modes.

Study of the structural damage identification method based on multi-mode information fusion

  • Liu, Tao;Li, AiQun;Ding, YouLiang;Zhao, DaLiang
    • Structural Engineering and Mechanics
    • /
    • v.31 no.3
    • /
    • pp.333-347
    • /
    • 2009
  • Due to structural complicacy, structural health monitoring for civil engineering needs more accurate and effectual methods of damage identification. This study aims to import multi-source information fusion (MSIF) into structural damage diagnosis to improve the validity of damage detection. Firstly, the essential theory and applied mathematic methods of MSIF are introduced. And then, the structural damage identification method based on multi-mode information fusion is put forward. Later, on the basis of a numerical simulation of a concrete continuous box beam bridge, it is obviously indicated that the improved modal strain energy method based on multi-mode information fusion has nicer sensitivity to structural initial damage and favorable robusticity to noise. Compared with the classical modal strain energy method, this damage identification method needs much less modal information to detect structural initial damage. When the noise intensity is less than or equal to 10%, this method can identify structural initial damage well and truly. In a word, this structural damage identification method based on multi-mode information fusion has better effects of structural damage identification and good practicability to actual structures.