• Title/Summary/Keyword: sensitivity model

Search Result 3,399, Processing Time 0.038 seconds

Analysis on University Students' Prevention Awareness of EIDs (일부 대학생들의 신종 감염병에 대한 예방인식의 분석)

  • Kim, Seung-Dae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.447-454
    • /
    • 2019
  • The purpose of this study aims to be used as base data of a policy which forms university students' appropriate behavior for the prevention of infection by analyzing some university students' prevention awareness of new type of infection. A self-administered questionnaire survey about students' seriousness, sensitivity, self-efficacy, and prevention behavior intent of new infection, was conducted in an university located in Gyeonbuk from April. 30th to May. 11th, 2018. Analyzing factors which affect the prevention behavior intent of infection with controlled general factor and health behavior, the prevention behavior intent was increased by ${\beta}=.125$ as seriousness increases and ${\beta}=.709$ as self-efficacy increases in Model 2, final model. However, sensitivity has no significant effect on the prevention behavior intent. Originally sensitivity has to be a significant factor regarding to the prevention behavior intent of new infection. But the result that sensitivity has no influence at all, shows that the students are insensitive to new diseases as they don't fear or sense danger of new infection. Therefore, a disease control policy which helps to increase sensitivity has to be established.

Optimization of the construction scheme of the cable-strut tensile structure based on error sensitivity analysis

  • Chen, Lian-meng;Hu, Dong;Deng, Hua;Cui, Yu-hong;Zhou, Yi-yi
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1031-1043
    • /
    • 2016
  • Optimization of the construction scheme of the cable-strut tensile structure based on error sensitivity analysis is studied in this paper. First, the element length was extracted as a fundamental variable, and the relationship between element length change and element internal force was established. By setting all pre-stresses in active cables to zero, the equation between the pre-stress deviation in the passive cables and the element length error was obtained to analyze and evaluate the error effects under different construction schemes. Afterwards, based on the probability statistics theory, the mathematical model of element length error is set up. The statistical features of the pre-stress deviation were achieved. Finally, a cable-strut tensile structure model with a diameter of 5.0 m was fabricated. The element length errors are simulated by adjusting the element length, and each member in one symmetrical unit was elongated by 3 mm to explore the error sensitivity of each type of element. The numerical analysis of error sensitivity was also carried out by the FEA model in ANSYS software, where the element length change was simulated by implementing appropriate temperature changes. The theoretical analysis and experimental results both indicated that different elements had different error sensitivities. Likewise, different construction schemes had different construction precisions, and the optimal construction scheme should be chosen for the real construction projects to achieve lower error effects, lower cost and greater convenience.

A Study on the Parameters of WASP5 Model in Daechung Reservoir (대청호에서 WASP5 모델 매개변수에 관한 연구)

  • Han, Woon Woo;Kim, Kyu-Hyung;Ahn, Tae-Bong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.3
    • /
    • pp.69-77
    • /
    • 2003
  • This study was carried out to evaluate the WASP5 model parameters and to analyze the sensitivity of parameters in Daechung Reservoir. The values predicted by the model and tendency were very similar to the observed data at Daejeon intake, so it is possible to predict water quality of the Daejeon intake region in the future. Results from the sensitivity analysis showed that Chlorophyll-a was sensitive to variations in saturated growth rate of phytoplankton, endogenous respiration rate of phytoplankton, extinction coefficient and temperature. T-N was sensitive to mineralization rate of dissolved organic nitrogen and temperature. T-P was affected by T-P load, temperature, extinction coefficient, mineralization rate of dissolved organic phosphorus and saturated growth rate of phytoplankton. BOD was influenced by deoxygenation rate and temperature, and DO was influenced by temperature. Adequate input data was applied and assessed through the model sensitivity analysis. So it is possible to distinguish the input data which need careful attention when it has application to model.

  • PDF

The Effects of University Students' Self-Differentiation and Rejection Sensitivity on Interpersonal Anxiety : Moderated Mediating by Gender (대학생의 자아분화 및 거부민감성이 대인불안에 미치는 영향 : 성별에 따른 조절된 매개효과)

  • Kim, Na Ru Mi;Park, Bu Jin;Kim, Se Young
    • Journal of Families and Better Life
    • /
    • v.34 no.4
    • /
    • pp.111-125
    • /
    • 2016
  • The purpose of this study was to model the relations between male and female university students' self-differentiation, rejection sensitivity, and interpersonal anxiety. Questionnaires from 502 university students in Seoul were analysed. The findings are as follows. Firstly, self-differentiation, rejection sensitivity, and interpersonal anxiety were significantly different according to gender. Secondly, the level of differentiation from family regression was higher for both male and female students. And the lower the rejection sensitivity experiencing in vertical relations became, and the lower the rejection sensitivity on horizontal relations was, the lower the interpersonal anxiety became. Thirdly, it was confirmed that for male students, differentiation from family regression affected rejection sensitivity on horizontal relations, and for females, differentiation from emotional reactivity affected ejection sensitivity on both horizontal and vertical relations. Finally, rejection sensitivity played a full mediation parameter when self-differentiation affected interpersonal anxiety, and it was demonstrated differences by gender. This study was meaningful in that it confirmed the relations between male and female university students' self-differentiation, rejection sensitivity, and interpersonal anxiety.

The Sensitivity Analysis of Parameters of Urban Runoff Models due to Variations of Basin Characteristics (I) - Development of Sensitivity Analysis Method - (유역특성 변화에 따른 도시유출모형의 매개변수 민감도분석(I) -민감도분석방법의 개발-)

  • Seo, Gyu-U;Jo, Won-Cheol
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.243-252
    • /
    • 1998
  • In this study, the new dimensionless values were defined and proposed to determine the parameters of urban runoff models based on the relative sensitivity analysis. Also, the sensitivity characteristics of each parameter were investigate. In order to analyze the parameter sensitivities of each model, total runoff ratio, peak runoff ratio, runoff sensitivity ratio, sensitivity ratio of total runoff, and sensitivity ratio of peak runoff were defined. $$Total\;runoff\;ratio(Q_{TR})\;=\;\frac{Total\;runoff\;of\;corresponding\;step}{Maximum\;total\;runoff}$$$$Peak\;runoff\;ratio(Q_{PR})\;=\;\frac{Peak\;runoff\;of\;corresponding\;step}{Maximum\;peak\;runoff}$$$$Runoff\;sensitivity\;ratio(Q_{SR})\;=\;\frac{Q_{TR}}{Q_{PR}}$$ And for estimation of sensitivity ratios based on the scale of basin area, rainfall distributions and rainfall durations in ILLUDAS & SWMM, the reasonable ranges of parameters were proposed.

  • PDF

Modified Tikhonov regularization in model updating for damage identification

  • Wang, J.;Yang, Q.S.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.5
    • /
    • pp.585-600
    • /
    • 2012
  • This paper presents a Modified Tikhonov Regularization (MTR) method in model updating for damage identification with model errors and measurement noise influences consideration. The identification equation based on sensitivity approach from the dynamic responses is ill-conditioned and is usually solved with regularization method. When the structural system contains model errors and measurement noise, the identified results from Tikhonov Regularization (TR) method often diverge after several iterations. In the MTR method, new side conditions with limits on the identification of physical parameters allow for the presence of model errors and ensure the physical meanings of the identified parameters. Chebyshev polynomial is applied to approximate the acceleration response for moderation of measurement noise. The identified physical parameter can converge to a relative correct direction. A three-dimensional unsymmetrical frame structure with different scenarios is studied to illustrate the proposed method. Results revealed show that the proposed method has superior performance than TR Method when there are both model errors and measurement noise in the structure system.

Material model for load rate sensitivity

  • Kozar, Ivica;Ibrahimbegovic, Adnan;Rukavina, Tea
    • Coupled systems mechanics
    • /
    • v.7 no.2
    • /
    • pp.141-162
    • /
    • 2018
  • This work presents a novel model for analysis of the loading rate influence onto structure response. The model is based on the principles of nonlinear system dynamics, i.e., consists of a system of nonlinear differential equations. In contrast to classical linearized models, this one comprises mass and loading as integral parts of the model. Application of the Kelvin and the Maxwell material models relates the novel formulation to the existing material formulations. All the analysis is performed on a proprietary computer program based on Wolfram Mathematica. This work can be considered as an extended proof of concept for the application of the nonlinear solid model in material response to dynamic loading.

A damage mechanics based random-aggregate mesoscale model for concrete fracture and size effect analysis

  • Ni Zhen;Xudong Qian
    • Computers and Concrete
    • /
    • v.33 no.2
    • /
    • pp.147-162
    • /
    • 2024
  • This study presents a random-aggregate mesoscale model integrating the random distribution of the coarse aggerates and the damage mechanics of the mortar and interfacial transition zone (ITZ). This mesoscale model can generate the random distribution of the coarse aggregates according to the prescribed particle size distribution which enables the automation of the current methodology with different coarse aggregates' distribution. The main innovation of this work is to propose the "correction factor" to eliminate the dimensionally dependent mesh sensitivity of the concrete damaged plasticity (CDP) model. After implementing the correction factor through the user-defined subroutine in the randomly meshed mesoscale model, the predicted fracture resistance is in good agreement with the average experimental results of a series of geometrically similar single-edge-notched beams (SENB) concrete specimens. The simulated cracking pattern is also more realistic than the conventional concrete material models. The proposed random-aggregate mesoscale model hence demonstrates its validity in the application of concrete fracture failure and statistical size effect analysis.

The Extraction Method for the G-Sensitivity Scale-Factor Error of a MEMS Vibratory Gyroscope Using the Inertial Sensor Model (관성센서 오차 모델을 이용한 진동형 MEMS 자이로스코프 G-민감도 환산계수 오차 추출 기법)

  • Park, ByungSu;Han, KyungJun;Lee, SangWoo;Yu, MyeongJong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.6
    • /
    • pp.438-445
    • /
    • 2019
  • In this paper, we present a new approach to extract the g-sensitivity scale-factor error for a MEMS gyroscope. MEMS gyroscopes, based on the use of both angular momentum and the Coriolis effect, have a g-sensitivity error due to mass unbalance. Generally, the g-sensitivity error is not considered in general use of gyroscopes, but it deserves our attention if we are to develop for tactical class performance and reliability. The g-sensitivity error during vehicle flight increases navigation error; so it must be analyzed and compensated for the use of MEMS IMU for high dynamics vehicle systems. Therefore, we analyzed how to extract the g-sensitivity scale-factor error from the inertial sensor error model. Furthermore we propose a new method to extract the g-sensitivity error using flight motion simulator. We verified our proposed method with experimental results.

Pattern-Mixture Model of the Cox Proportional Hazards Model with Missing Binary Covariates (결측이 있는 이산형 공변량에 대한 Cox비례위험모형의 패턴-혼합 모델)

  • Youk, Tae-Mi;Song, Ju-Won
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.2
    • /
    • pp.279-291
    • /
    • 2012
  • When fitting a Cox proportional hazards model with missing covariates, it is inefficient to exclude observations with missing values in the analysis. Furthermore, if the missing-data mechanism is not Missing Completely At Random(MCAR), it may lead to biased parameter estimation. Many approaches have been suggested to handle the Cox proportional hazards model when covariates are sometimes missing, but they are based on the selection model. This paper suggest an approach to handle Cox proportional hazards model with missing covariates by using the pattern-mixture model (Little, 1993). The pattern-mixture model is expressed by the joint distribution of survival time and the missing-data mechanism. In the pattern-mixture model, many models can be considered by setting up various restrictions, and different results under various restrictions indicate the sensitivity of the model due to missing covariates. A simulation study was conducted to show the sensitivity of parameter estimation under different restrictions in a pattern-mixture model. The proposed approach was also applied to mouse leukemia data.