• Title/Summary/Keyword: sensitivity factor

Search Result 1,391, Processing Time 0.045 seconds

A Study on Effective Enhancement of Load Power Factor Using the Load Power Factor Sensitivity of Generation Cost

  • Lee Byung Ha;Kim Jung-Hoon
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.3
    • /
    • pp.252-259
    • /
    • 2005
  • Various problems such as increase of power loss and voltage instability may often occur in the case of low load power factor. The demand of reactive power increases continuously with the growth of active power and restructuring of electric power companies makes the comprehensive management of reactive power a troublesome problem, so that the systematic control of load power factor is required. In this paper, the load power factor sensitivity of generation cost is derived and it is used for effectively determining the locations of reactive power compensation devices and for enhancing the load power factor appropriately. In addition, voltage variation penalty cost is introduced and integrated costs including voltage variation penalty cost are used for determining the value of load power factor from the point of view of economic investment and voltage regulation. It is shown through application to a large-scale power system that the load power factor can be enhanced effectively using the load power factor sensitivity and the integrated cost.

Comparison Study of Sensitivity Factors of Elements in Glow Discharge- & Inductively Coupled Plasma- Mass Spectrometry

  • Kim, Young-Sang;Plotnikov, M.;Hoffmann, Volker
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.12
    • /
    • pp.1991-1995
    • /
    • 2005
  • Sensitivity factors of elements by a glow discharge mass spectrometry (GD-MS) were intensively investigated and compared with a laser ablation inductively coupled plasma-mass spectrometry (ICP-MS). In case of copper matrix, the sensitivity factor by GD-MS generally decreases with the increase of the mass number of element. The details are a little different between each data measured by Faraday and multiplier detectors. The factor by a multiplier detector drastically decreases with the mass increase in the region of low mass as in Faraday detector’s case, but slowly in the high mass region. On the contrast, the sensitivity factor of solution standard by a conventional ICP-MS slowly increases with the increase of elemental mass number even though there are some exceptions such as gold and also the sensitivity factor by a laser ablation ICP MS generally increases with mass number of element in the specimen of glass type. In case of steel matrix, any definite trends could not be shown in the relationship between the GD-MS’s sensitivity factor and elemental mass.

A Study on the Effective Enhancement of the Load Power Factor Using the Load Power Factor Sensitivity of Generation Cost (발전비용의 부하역률 감도를 이용한 효율적인 역률 개선 연구)

  • Lee, B.H.;Oh, M.H.;Kim, J.H.;Shim, K.B.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.196-198
    • /
    • 2003
  • The low load power factor causes various problems such as the increase of the power loss and the voltage instability. The demand of reactive power increases continuously with the growth of active power and the restructuring of electric power companies makes the integrated management of ractive power troublesome, from which the systematic control of load power factor is required. In this paper, the load power factor sensitivity of the generation cost is derived and its effects in supplying the reactive power and enhancing the load power factor are analyzed in a small-scale power system. The load power factor sensitivity of the generation cost is applied for determining the locations and capacities of reactive power compensation devices. It is shown that the generation cost can be reduced and the system power factor can be enhanced effectively using the load power factor sensitivity.

  • PDF

A Study on a Methodology of Determining an Appropriate Load Power Factor Effectively by the Use of Reactive Power Sensitivity and Load Duration Curve (무효전력 민감도와 부하지속곡선을 활용한 적정 부하역률의 효과적인 산정 기법에 관한 연구)

  • Lee, Byung Ha;Hwang, Sung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1782-1790
    • /
    • 2012
  • In this paper, a methodology to use load duration curve and the reactive power factor sensitivity of generation cost is proposed for analyzing the effects of load power factor effectively. A great deal of cases of power systems are classified into several patterns according to the characteristics using load duration curve, and the overall effects of load power factor are assessed by integrating the analysis results of load power factor in all the patterns. The reactive power sensitivity of generation cost and the integrated costs such as generation cost, investment cost, voltage variation penalty cost and CO2 emission cost are used for determining an appropriate load power factor. A systematic procedure for effective analysis of load power factor is presented. It is shown through the application to the practical power system of KEPCO(Korea Electric Power Corporation)that the effects of load power factor can be analyzed effectively using load duration curve and reactive power factor sensitivity.

A Study on the G-Sensitivity Error of MEMS Vibratory Gyroscopes (진동형 MEMS 자이로스코프 G-민감도 오차에 관한 연구)

  • Park, Byung-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1075-1079
    • /
    • 2014
  • In this paper, we describe the analysis and the compensation method of the g-sensitivity error for MEMS vibratory gyroscopes. Usually, the g-sensitivity error has been ignored in the commercial MEMS gyroscope, but it deserves our attention to apply for the missile application as a tactical grade performance. Thus, it is necessary to compensate for the g-sensitivity error to reach a tactical grade performance. Generally, the g-sensitivity error seems intuitively to be a gyroscope bias error proportional to the linear acceleration. However, we assert that the g-sensitivity error mainly causes not a bias error but a scale-factor error. And we verify that the g-sensitivity scale-factor error occurs due to the non-linearity of parallel plate electrodes. Therefore, we propose the compensation method to remove the g-sensitivity scale-factor error. The experimental result showed that a proposed compensation method improved successfully the performance of the MEMS vibratory gyroscope.

A Study on the Effective Enhancement of the Load Power Factor Using the Load Power Factor Sensitivity of Generation Cost (부하역률 감도기법 적용에 의한 효율적인 부하역률 개선에 관한 연구)

  • Lee Byung Ha;Kim Jung-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.1
    • /
    • pp.18-24
    • /
    • 2005
  • Various problems such as the increase of the power loss and the voltage instability may often occur in the case of low load power factor. The demand of reactive power increases continuously with the growth of active power and the restructuring of electric power companies makes the comprehensive management of reactive power a troublesome problem, so that the systematic control of load power factor is required. In this paper, the load power factor sensitivity of the generation cost is derived and it is used for determining the locations of reactive power compensation devices effectively and for enhancing the load power factor appropriately. In addition, the voltage variation penalty cost is introduced and the integrated costs including the voltage variation penalty cost are used for determining the value of the load power factor from the point of view of the economic investment and voltage regulation. It is shown through the application to a large-scale power system that the load power factor can be enhanced effectively and appropriately using the load power factor sensitivity and integrated costs.

Coprime factor reduction of plant in $H{\infty}$ mixed sensitivity problem

  • Um, Tae-Ho;Oh, Do-Chang;Park, Hong-Bea;Kim, Soo-Joong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.340-343
    • /
    • 1995
  • In this paper, we get a reduced order controller in $H^{\infty}$ mixed sensitivity problem with weighting functions. For this purpose, we define frequency weighted coprime factor of plant in $H^{\infty}$ mixed sensitivity problem and reduce the coprime factor using the frequency weighted balanced truncation technique. The we design the controller for plant with reduced order coprime factor using J-lossless coprime factorization technique. Using this approach, we can derive the robust stability condition and achieve good performance preservation in the closed loop system with reduced order controller. And it behaves well in both stable plant and unstable plant.t.

  • PDF

A Study on Enhancing the Load Power Factor from the Point of View of Economic Operation Using the Load Power Factor Sensitivity Method (부하역률 감도기법 적용에 의한 전력시스템의 경제운용 측면에서의 역률개선 방안 연구)

  • Lee B. H.;Kim J. H.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.153-155
    • /
    • 2004
  • Various problems such as the increase of the power loss and the voltage instability may often occur in the case of low load power factor. The demand of reactive power increases continuously with the growth of active power and the restructuring of electric power companies makes the integrated management of ractive power a troublesome problem, so that the systematic control of load power factor is required. In this paper, the load power factor sensitivity of the generation cost is used for determining the locations of reactive power compensation devices effectively and for enhancing the load power factor appropriately. In addition, the integrated costs are used for determining the value of the load power factor from the point of view of the economic operation. It is shown through the application to a large-scale power system that the system power factor can be enhanced effectively and appropriately using the load power factor sensitivity and integrated costs.

  • PDF

A Study on the Effective Enhancement of the Load Power Factor Using the Load Power Factor Sensitivity of Generation Cost and Integrated Costs (발전비용의 부하역률 감도와 종합비용을 활용한 효과적인 역률개선 방안 연구)

  • Lee, B.H.;Oh, M.H.;Kim, J.H.;Shim, K.B.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.284-286
    • /
    • 2003
  • The low load power factor causes various problems such as the Increase of the power loss and the voltage instability. The demand of reactive power increases continuously with the growth of active power and the restructuring of electric power companies makes the integrated management of ractive power troublesome, from which the systematic control of load power factor is required. In this paper, the load power factor sensitivity of the generation cost and integrated costs are used for determining the locations and capacities of reactive power compensation devices effectively and for enhancing the load power factor appropriately. It is shown through the application to a small-scale power system that the system power factor can be enhanced effectively and appropriately using the load power factor sensitivity and integrated costs.

  • PDF

Sensitivity Analysis of the Power System Considering the Load Power Factor While using Direct Load Control (부하 역률을 고려한 직접부하제어 실행시 계통의 민감도 분석)

  • Chae, Myeong-Suk
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.333-336
    • /
    • 2015
  • Recently, the power load is growing larger and because of the environmental limitation of generation, the expansion of generation facilities are becoming more difficult. For that reason the importance of the demand-side resources come to be higher. One method of the demand-side resource, the DLC Program, has executed, and moreover, the loads which are available to be controlled are increasing. It should be considered of some kinds of power system components such as DLCs, because the fact that using the demand resources will be an important part of the power system. This paper considers the power factor of the load-bus which is shedded in the direct load control program. and then analyze the power system using flow sensitivity and voltage sensitivity. In this paper, we assumed two scenarios through the rank of the load power factor at each bus and to compare and evaluate each case, we used Power World for the simulation.