• Title/Summary/Keyword: sensitivity experiments

Search Result 740, Processing Time 0.026 seconds

A conditional lethal mutation of a nucleoporin gene, NUP49 in saccharomyces cerevisiae

  • Lee, Youn-Soo;Song, Young-Ja;Kyung, Hwang-Mi;Lee, Woo-Bok;Kim, Jin-Mi
    • Journal of Microbiology
    • /
    • v.35 no.3
    • /
    • pp.234-238
    • /
    • 1997
  • Conditional lethal mutation nup49-1 of a nuclear pore complex component gene was constructed in Saccharomyces cerevisiae. This mutation deleted one third of the essential NUP49 gene at the carboxy-terminal, but retained 13 repeats of the highly conserved GLFG domain. The nup49-1 mutant strain was viable with a slow-growth phenotype, indicating that the C-terminal is dispensable at normal growth temperature. This strain exhibited both temperature-sensitivity at 37.deg.C and cold-sensitivity at 16.deg.C. Temperature shift experiments revealed that the arrest phenotype at 37.deg.C was random in the cell division cycle. The nup49-1 mutation was tested to be recessive and is expected to be useful for the functional analysis of nuclear pore complex proteins as well as for studies of nuclear transport systems.

  • PDF

Identifiability of Ludwik's law parameters depending on the sample geometry via inverse identification procedure

  • Zaplatic, Andrija;Tomicevic, Zvonimir;Cakmak, Damjan;Hild, Francois
    • Coupled systems mechanics
    • /
    • v.11 no.2
    • /
    • pp.133-149
    • /
    • 2022
  • The accurate prediction of elastoplasticity under prescribed workloads is essential in the optimization of engineering structures. Mechanical experiments are carried out with the goal of obtaining reliable sets of material parameters for a chosen constitutive law via inverse identification. In this work, two sample geometries made of high strength steel plates were evaluated to determine the optimal configuration for the identification of Ludwik's nonlinear isotropic hardening law. Finite element model updating(FEMU) was used to calibrate the material parameters. FEMU computes the parameter changes based on the Hessian matrix, and the sensitivity fields that report changes of computed fields with respect to material parameter changes. A sensitivity analysis was performed to determine the influence of the sample geometry on parameter identifiability. It was concluded that the sample with thinned gauge region with a large curvature radius provided more reliable material parameters.

CURRENT STATUS OF THE EAVN EXPERIMENTS

  • HAGIWARA, YOSHIAKI;AN, TAO;JUNG, TAEHYUN;RHO, DUK-GYOO;ZHANG, MING;HAO, LONGFEI;FUJISAWA, KENTA;YONEKURA, YOSHINORI;BAAN, WILLEM;KIM, JONGSOO;KOBAYASHI, HIDEYUKI
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.641-643
    • /
    • 2015
  • VLBI experiments have been conducted by radio telescopes in the East Asia VLBI Network (EAVN) in which 14 telescopes in China, Japan, and Korea participated. One of the aims of the EAVN is to obtain higher angular resolution that is provided by the 6,000 km baseline between China and Japan and better sensitivity by adding large telescopes. Data were recorded at 1 a Gbps recording rate at all stations and processed on the Korea-Japan Joint VLBI Correlator (KJJVC) at the Korea-Japan Correlation Center (KJCC) after experiments. Fringes were obtained from these experiments conducted at 8 GHz and 22 GHz and post-correlation data analysis of the experiments is undergoing. The outcomes of these experiments open the possibility of conducting EAVN observations with global VLBI networks. In this presentation, the recent status of these experiments and future prospects are presented.

Uncertainties in blast simulations evaluated with Smoothed Particle Hydrodynamics method

  • Husek, Martin;Kala, Jiri
    • Structural Engineering and Mechanics
    • /
    • v.74 no.6
    • /
    • pp.771-787
    • /
    • 2020
  • The paper provides an inside look into experimental measurements, followed by numerical simulations and their related uncertainties. The goal of the paper is to present findings related to blast loading and the handling of defects that are inherent in experiments. Very often it might seem that experiments are simplified reflections of real-life conditions. In most cases this is true, but there is a good reason for that. The more complex an experiment is, the larger the amount of uncertainties that can be expected. This especially applies when the blast loading of concrete is the subject of research. When simulations fail to reproduce the results of experimental measurements, it does not necessarily mean there is something wrong with the numerical model. The problem could be missing information. Put differently, the numerical simulation may lack information that seemed irrelevant with regard to the experiment. In the presented case, a reference simulation with a proven material model unexpectedly failed to replicate the results of an experiment where concrete slabs were exposed to blast loading. This resulted in a search for possible unknowns. When all of the uncertainties were examined, the missing information turned out to be the orientation of the charge to the concrete slab. Since the experiment was burdened with error, a sensitivity study had to take place so the influence of this factor could be better understood. The findings point to the fact that even the smallest defect during experiments must somehow be taken into account when designing numerical simulations. Otherwise, the simulations are not correlated to the experiments, but merely to some expectations.

Qualification for Impedance-based Rain Detectors

  • Lee, Sang-Wook;Choi, Byung Il;Kim, Jong Chul;Woo, Sang-Bong;Kim, Yong-Gyoo
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.149-154
    • /
    • 2017
  • Detection of rain is one of the essential weather factors that are monitored by automatic weather stations in Korea. In this work, we studied the operation standards required for impedance-based rain detectors in terms of surface temperature and sensitivity, in an effort to establish a qualification procedure for rain detectors. The surface temperature of rain detectors was measured at varying air temperatures from $-30^{\circ}C$ to $20^{\circ}C$, considering the hypothetical presence and absence of rain/snow. In addition, the sensitivity of rain detectors was studied generating artificial raindrops of regular size. The sensitivity was evaluated in terms of the critical number of droplets that triggers the activation of the rain detector. We found that the sensitivity is affected by stationary, horizontal, and vertical droplet deposition methods. The critical number of droplets for the stationary deposition is higher than that for both horizontal and vertical depositions, which provides the maximum limit of droplets required to activate the detector. Based on our experiments considering surface temperature measurements and sensitivity tests, we suggest a revised version of surface temperature and sensitivity requirements for the qualification of impedance-based rain detectors.

Typhoon Wukong (200610) Prediction Based on The Ensemble Kalman Filter and Ensemble Sensitivity Analysis (앙상블 칼만 필터를 이용한 태풍 우쿵 (200610) 예측과 앙상블 민감도 분석)

  • Park, Jong Im;Kim, Hyun Mee
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.287-306
    • /
    • 2010
  • An ensemble Kalman filter (EnKF) with Weather Research and Forecasting (WRF) Model is applied for Typhoon Wukong (200610) to investigate the performance of ensemble forecasts depending on experimental configurations of the EnKF. In addition, the ensemble sensitivity analysis is applied to the forecast and analysis ensembles generated in EnKF, to investigate the possibility of using the ensemble sensitivity analysis as the adaptive observation guidance. Various experimental configurations are tested by changing model error, ensemble size, assimilation time window, covariance relaxation, and covariance localization in EnKF. First of all, experiments using different physical parameterization scheme for each ensemble member show less root mean square error compared to those using single physics for all the forecast ensemble members, which implies that considering the model error is beneficial to get better forecasts. A larger number of ensembles are also beneficial than a smaller number of ensembles. For the assimilation time window, the experiment using less frequent window shows better results than that using more frequent window, which is associated with the availability of observational data in this study. Therefore, incorporating model error, larger ensemble size, and less frequent assimilation window into the EnKF is beneficial to get better prediction of Typhoon Wukong (200610). The covariance relaxation and localization are relatively less beneficial to the forecasts compared to those factors mentioned above. The ensemble sensitivity analysis shows that the sensitive regions for adaptive observations can be determined by the sensitivity of the forecast measure of interest to the initial ensembles. In addition, the sensitivities calculated by the ensemble sensitivity analysis can be explained by dynamical relationships established among wind, temperature, and pressure.

Sensitivity Control and Design of the Silicone Foot Sensor Using FEM (유한요소 해석을 통한 실리콘 족적 센서의 감도 조절 및 설계)

  • Seong, Byuck Kyung;Seo, Hyung Kyu;Lee, Jin Wook;Kwon, Ae-Ran;Kim, Dong Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.11
    • /
    • pp.1041-1050
    • /
    • 2014
  • A design and analysis for new foot sensor that measures pressure distribution while walking or running in daily life is introduced. In the process of the sensor design, the shape, mechanism composing of the sensor, and variables that dominate sensor's sensitivity are investigated. Through these variables analysis, an optimal shape and dimension were determined. The effects of variables on sensor's sensitivity and the relationship between each variable are proved by analyses and experiments.

3-axis Moving Magnet Type Actuator (가동 자석형 3 축 구동 엑츄에이터)

  • Hur, Young-Jun;Song, Myeong-Gyu;Park, No-Cheol;Yoo, Jeong-Hoon;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1033-1036
    • /
    • 2007
  • The optical disc drive has used a high NA objective lens and a shorter wavelength laser diode for high recording density. But high NA and shorter wavelength cause several margins to become short. Focusing and tracking servo has to be more accurate and active tilt compensation mechanism is also needed for coma aberration compensation. In this paper, we proposed 3-axis moving magnet type actuator. For 3-DOF motion, moving coil actuator has to equip 6 wires for supplying 3 independent signals. However, moving magnet type actuator doesn't need to change the configuration of wires because coils are in stator. So, we added tilting mechanism to 2-axis moving magnet actuator which is designed in previous research. Addition of the tilting mechanism cuts down the focusing sensitivity. So, maximization the tilting sensitivity and securing the focusing sensitivity are objectivities of this research. DOE (design of experiments) procedures of electromagnetic circuit are performed for parameter study and the optimization is also performed to maximize the tilt sensitivity. And then the final design is suggested and its performance is verified by FE simulation.

  • PDF

Experimental und Numerical Sensitivity Analyses on Push Pull Tracer Tests

  • Hwang, Hyeon-Tae;Lee, Gang-Geun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.312-316
    • /
    • 2004
  • Single-well tracer tests, especially push pull tracer tests, are more effective to estimate hydraulic parameters and microbial metabolic activities in terms of duration and cost compared to multi-well tracer tests. However, there are some drawbacks in accuracy, complicated data analysis and uniqueness. These shortages are thought to be derived from the applied conditions which affect mass recovery curve and breakthrough curve. Factors such as extraction rate, resting period, hydraulic conductivity and hydraulic gradient are considered as the major factors determining the mass recovery rate and shape of the breakthrough curve. The results of the sensitivity analysis are summarized as follows: 1) the significant change in concentration of breakthrough curve is obtained when the extraction rate increases. This effect would also be much higher if the hydraulic conductivity is lower; 2) the mass recovery rate decreases with the increase of resting time, and the difference of mass recovery rates for different resting times is inversely proportional to the hydraulic conductivity; 3) the sensitivity values decrease with time. The hydraulic conductivity affects not only the early period, but the later period of the breakthrough curves; 4) The influence of the hydraulic gradient on the breakthrough curves is greater at earlier stage than at later stage. The mass recovery rate is inversely proportional to the hydraulic gradient.

  • PDF

Changes in sensitivity across visual field induced by exogenous attention (외인성 주의 유도에 의한 시야의 시각 민감도 변화)

  • Jeong, Sang-Cheol;Hyeon, Ju-Seok;Jeong, Chan-Seop
    • Korean Journal of Cognitive Science
    • /
    • v.8 no.4
    • /
    • pp.63-75
    • /
    • 1997
  • Changes in visual sensitivity were investigated as a function of distance from the locus of attention. While a subject was fixating at a point on a frontal plane, one of the two attention inducing points placed horizontally and symmetrically 4。 apart from it was blinked and a target immediately followed at a location around the blinking dot. The subject's task was to decide and report whether the target was present or abscent. The rate of detection was the highest at the immediate vicinity of the locus of attention and decreased gradually as a function of the distance from it. Results of the experiments support the gradient model of attention-induced changes in visual sensitivity.

  • PDF