• Title/Summary/Keyword: sensitivity experiment

Search Result 745, Processing Time 0.026 seconds

Differences of Psychophysiological Responses due to Individual Sensitivity of Simulator Sickness (Simulator Sickness의 개인적인 민감도에 따른 심리생리학적 반응의 차이)

  • 정순철;민병찬;정은지;이봉수;이정한;김철중
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.25 no.2
    • /
    • pp.11-18
    • /
    • 2002
  • Psychological and physiological effects of the simulator sickness could be important bias factors for the sensibility evaluation. The purpose of the present study was to clear the differences of psychophysiological responses due to individual sensitivity of simulator sickness. The present experiment tried to investigate the simulator sickness objectively by observing the change of the simulator sickness for the different level of sickness groups (sick and non_sick group). The subjective evaluations using Simulator Sickness Questionnaire (SSQ) and physiological responses were measured every five minutes when they were driving as 60km/h in the driving graphic simulator. Response level of the subjective evaluation for all subjects on the simulator sickness was linearly increased with time for every item, and the response level of sick group was bigger than that of non_sick group. When the analysis on central nervous system was done separately on the sick and the non_sick group, there was significant difference in the parameter $\theta$/total at Fz and Cz. Although the analysis on autonomic nervous system for all subjects showed the increased activation of sympathetic nervous system, there was no significant difference between the sick and non_sick group. In summary, it is necessary to select the subjects who feel less simulator sickness in order to be accurate sensibility evaluation. The parameters to distinguish between the sick and non_sick group were the change on $\theta$/total and subjective evaluation using SSQ.

Effects Analysis of Governmental Research Buildings by the Main Components and Frame Repair Activities (공공 연구원 건축물의 대수선에 따른 효과분석)

  • Lee, Kang-Hee;Chae, Chang-U
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.26 no.6
    • /
    • pp.29-37
    • /
    • 2019
  • The research institute has a function to get the research outcome through the various experiments, data collection and analysis. Therefore, research building is important to keep the research condition or experiment environment. But buildings would be deteriorated and leaded into the deterrence of research. Maintenance is planned to protect the research building condition through various general repair or heavy repair. The heavy repair is generally conducted in massive repair scope or main components preparation. In this paper, it aimed at analyzing the effect of the massive or main components repair with inputted cost and its resulted output. In order to analyze the effect of a massive repair, it used the Benefit/Cost analysis and sensitivity analysis. Results of this study are as follows : The benefit/cost analysis shows that research building whose researcher continuously live and study has good effect. On the contrary, pace of the the experimental function is not good effect in benefit/cost analysis. But the experimental function is indispensible to get the research outcom for the research goal. Therefore, the experimental function will be planned to repair and get the historical repair data because the proper repair time would be prepared to cut down the repair cost.

CAE-based DFSS Study for Road Noise Reduction (로드 노이즈 개선을 위한 전산응용해석 기반 DFSS 연구)

  • Kwon, Woo-Sung;Yoo, Bong-Jun;Kim, Byoung-Hoon;Kim, In-Dong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.7
    • /
    • pp.674-681
    • /
    • 2011
  • In the early phase of vehicle development, CAE is conducted as tool for vehicle performance assessment. To maintain acceptable road noise performance, solution for reduced vehicle sensitivity is required. Chassis interface dynamic stiffness characteristics are key component to isolating vibration and noise of road from the vehicle interior. This research provide how to set up the optimized dynamic characteristics under noise effect through DFSS study. CAE-based DOE is performed to build prediction math model, CMS process involves DOE to achieve very fast run times while giving results very comparable. Minimized 95th percentile of performance distribution is applied to minimize vehicle sensitivity and road noise levels variation during the optimization process. Finally, the results of optimization were reviewed for performance and robustness.

Local Flow Speed Measurement Using Tunable AC Thermal Anemometry

  • Chung Won Seok;Kwon Ohmyoung;Lee Joon Sik;Choi Young Ki;Park Seungho
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1449-1459
    • /
    • 2005
  • This paper shows the results of local flow speed measurement using tunable AC thermal anemometry, which is suitable for the accurate measurement of wide range flow speed. The measurement accuracy is verified through the comparison between the measurement data and the analytic solution of the sensor temperature oscillation in stationary fluid. The relation between the phase lag and the flow speed is experimentally investigated at various conditions. The measurement sensitivity for low flow speed improves in a low frequency region and that for high flow speed improves in a high frequency region. Also, the sensitivity increases with decreasing thermal conductivity of the surrounding fluid. The local flow speed could be measured as low as 1.5 mm/s and the highest measurement resolution was 0.05 mm/s in the range of 4.5 $\~$5.0 mm/s at 1 Hz in this experiment.

A Study on Applying the Direct Control Method for Small Forklift Transmission System (직접 제어 방식을 적용한 소형 지게차 변속 시스템에 관한 연구)

  • Jeong, Y.M.;Lim, K.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.10 no.4
    • /
    • pp.34-40
    • /
    • 2013
  • The transmission control method of small forklift is classified into pilot control method and direct control method. In pilot control method, the hydraulic circuit which consists a lot of components is very complex so the production process is too costly and time consuming. The direct control method contains fewer components that can be configured to simple hydraulic circuit. It has more advantages because the shift sensitivity of transmission is changed easily via the input profile. In this paper, the controller design and the input profile for system are studied to apply to the direct control method. The input profile consists of Fill section, Hold section and Ramp section. The characteristic of each section is obtained through experiment. As the result, the shift sensitivity and starting performance are effected by Fill section and Hold section.

An experimental study of the effect of mooring systems on the dynamics of a SPAR buoy-type floating offshore wind turbine

  • Hong, Sinpyo;Lee, Inwon;Park, Seong Hyeon;Lee, Cheolmin;Chun, Ho-Hwan;Lim, Hee Chang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.3
    • /
    • pp.559-579
    • /
    • 2015
  • An experimental study of the effect of mooring systems on the dynamics of a SPAR buoy-type floating offshore wind turbine is presented. The effects of the Center of Gravity (COG), mooring line spring constant, and fairlead location on the turbine's motion in response to regular waves are investigated. Experimental results show that for a typical mooring system of a SPAR buoy-type Floating Offshore Wind Turbine (FOWT), the effect of mooring systems on the dynamics of the turbine can be considered negligible. However, the pitch decreases notably as the COG increases. The COG and spring constant of the mooring line have a negligible effect on the fairlead displacement. Numerical simulation and sensitivity analysis show that the wind turbine motion and its sensitivity to changes in the mooring system and COG are very large near resonant frequencies. The test results can be used to validate numerical simulation tools for FOWTs.

Efficient baseline suppression via TIP and modified DEPTH

  • Hyun, Namgoong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.26 no.4
    • /
    • pp.51-58
    • /
    • 2022
  • The baseline flattened NMR spectrum has been achieved by several methodologies including pulse manipulation with a series of phase cycling. The background signal inherent in the probe is also main source of baseline distortion both in solution and solid NMR. The simple direct polarization with 90° pulse flipping the magnetization from the z-axis onto the receiver coil requires the strong rf pulse enough to encompass the wide frequency range to excite the resonance of interest nuclei. Albeit the perfect polarization 90° pulse, the signal from the unwanted magnetic fields such as background signal can not be completely suppressed by suitable phase cycling. Moreover, slowly baseline wiggling signal from the low 𝛾 nuclei is not easy to eliminate with multiple pulse manipulation. So there is still need to contrive the new scheme for that purpose in an adroit manner. In this article new triple pulse excitation schemes for TIP and modified DEPTH pulse sequence are analytically examined in terms of arbitrary phase and flip angle of pulse. The suitable phase cycling for these pulse trains is necessary for the good sensitivity and resolution of the spectrum. It is observed that the 13C sensitivity TIP experiment is almost equal to the CP/MAS with modified DEPTH sequence, both of which are applicable to both solid and solution state NMR.

Strategy for Providing Optimal VMS Travel Time Information Using Bi-Level Programming (Bi-Level 프로그래밍 기법을 이용한 최적의 VMS 통행시간 정보제공 전략)

  • Baik, Nam Cheol;Kim, Byung Kwan;Lee, Sang Hyup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.559-564
    • /
    • 2006
  • The purpose of this study is to minimize negative effect of VMS travel time information service by sensitivity analysis, which forecasts the change in link traffic volume. As a result, strategies for providing travel information that can change driving patterns for minimizing travel time were found. The framework for analysis is recently expanded with the application of game theory. According to the experiment, the algorithm generated for travel time information service reduces total travel time and yields travel patterns that is very close to the system optimization. Also, this study found that the route the travel time service information is provided about could play the important role.

Development of a High-performance COVID-19 Diagnostic Kit Employing Improved Antibody-quantum dot Conjugate

  • Seongsoo Kim;Hyunsoo Na;Hong-Geun Ahn;Han-Sam Park;Jaewoong Seol;Il-Hoon Cho
    • Biomedical Science Letters
    • /
    • v.29 no.4
    • /
    • pp.344-354
    • /
    • 2023
  • This study emphasizes the importance of early diagnosis and response to COVID-19, leading to the development of a rapid diagnostic kit using quantum dots. The research focuses on finely tuning bioconjugation with quantum dots to enhance the accuracy and sensitivity of COVID-19 diagnosis. We have developed a COVID-19 rapid diagnostic kit that exhibits a sensitivity more than 50 times higher than existing COVID-19 diagnostic kits. Quantum dots enable the accurate detection of COVID-19 viral antigens even at low concentrations, providing a rapid response in the early stages of infection. The COVID-19 quantum dot diagnostic kit offers quick analysis time, utilizing the quantum properties of particles to swiftly measure COVID-19 infection for immediate response and isolation measures. Additionally, this diagnostic kit allows for multiple analyses with ease, as multiple quantum dots can detect various antigens and antibodies simultaneously in a single experiment. This efficiency enhances testing, reduces sample requirements, and lowers experimental costs. The application of this diagnostic technology is anticipated in the future for early diagnosis and monitoring of other infectious diseases.

Comparison of Precision for Available Phosphate Measurement between Lancaster and Soiltek KA-1 Spectrophotometric Method (Lancaster 법과 Soiltek KA-1 분광광도계를 이용한 유효인산 측정법의 정밀도 비교)

  • Hyun, Hae-Nam;Lim, Han-Cheol;Eom, Ki-Cheol;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.3
    • /
    • pp.268-273
    • /
    • 1999
  • To measure the precision of Soiltek$^{(R)}$ KA-1 spectrophotometric measurement of soil available phosphate, standard deviation, C;V, and relative sensitivity were investigated, comparing to Lancaster method. Available phosphate concentration measured by Soiltek$^{(R)}$ KA-1 spectrophotometric method was highly correlated with Lancaster method($r=0.998^{***}$) and the slop of regression equation was close to 1.0. There were no differences in standard deviation. CV, and relative sensitivity for soil available phosphate concentrations measured by two methods. Regarding to convenience of experimental procedure and instrumental operation, and time saving analysis, Soiltek$^{(R)}$ KA-1 spectrophotometric measurement for soil available phosphate is highly recommended.

  • PDF