• Title/Summary/Keyword: sensitivity element

검색결과 1,004건 처리시간 0.023초

경계법을 이용한 형상최적화 문제의 설계민감도 해석 및 응용 (A Boundary Method for Shape Design Sensitivity Analysis for Shape Optimization Problems and its Application)

  • 최주호;곽현구
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.355-362
    • /
    • 2004
  • An efficient boundary-based technique is developed for addressing shape design sensitivity analysis in various problems. An analytical sensitivity formula in the form of a boundary integral is derived based on the continuum formulation for a general functional defined in problems. The formula, which is expressed in terms of the boundary solutions and shape variation vectors, can be conveniently used for gradient computation in a variety of shape design problems. While the sensitivity can be calculated independent of the analysis means, such as the finite element method (FEM) or the boundary element method (BEM), the FEM is used for the analysis in this study because of its popularity and easy-to-use features. The advantage of using a boundary-based method is that the shape variation vectors are needed only on the boundary, not over the whole domain. The boundary shape variation vectors are conveniently computed by using finite perturbations of the shape geometry instead of complex analytical differentiation of the geometry functions. The supercavitating flow problem and fillet problem are chosen to illustrate the efficiency of the proposed methodology. Implementation issues for the sensitivity analysis and optimization procedure are also addressed in these problems.

  • PDF

해석적 방법에 의한 맨드릴형 광-음향센서의 감도특성 분석 (Sensitivity Analysis of a Mandrel Type Fiber Optic Acoustic Sensor Using an Analytical Method)

  • 임종인;노용래
    • 한국음향학회지
    • /
    • 제19권3호
    • /
    • pp.92-99
    • /
    • 2000
  • 본 논문에서는 외부 음향신호에 대한 맨드릴형 광-음향센서의 반응특성을 이론적으로 해석하고, 재질변수 및 형상변수에 따른 음향감도를 해석적으로 분석하였다. 그리고 유한요소법으로 분석한 결과와 비교하여 해석적 분석결과의 타당성을 검증하였다. 그 결과, 대부분 일치하는 경향성을 보여주고 있으므로 해석적인 방법으로 대략적인 경향성 분석을 행하고, 필요한 영역에서 유한요소법을 이용하여 정밀한 해석을 하는 것이 광-음향센서의 최적구조를 설계하기 위한 경제적인 방법인 것으로 나타났다.

  • PDF

A new stability and sensitivity design and diagnosis approach

  • Sari, Ali;Korkmaz, Kasim A.
    • Steel and Composite Structures
    • /
    • 제23권6호
    • /
    • pp.683-690
    • /
    • 2017
  • In the stability and sensitivity design and diagnosis approaches, there are various methodologies available. Bond graph modeling by lumping technique is one of the universal methodologies in methodical analysis used by many researchers in all over the world. The accuracy of the method is validated in different arenas. Bond graphs are a concise, pictorial representation of the energy storage, dissipation and exchange mechanisms of interacting dynamic systems, subsystems and components. This paper proposes a bond graph modeling for distributed parameter systems using lumping techniques. Therefore, a steel frame structure was modeled to analyze employing bond graph modeling of distributed system using lumping technique. In the analytical part, the effectiveness of bond graphs to model this system is demonstrated. The dynamic responses of the system were computed and compared with those computed from the finite element analysis. The calculated maximum deflection time histories were found to be comparable. The sensitivity and the stability of the steel frame structure was also studied in different aspects. Thus, the proposed methodology, with its simplicity, can be used for stability and sensitivity analyses as alternative to finite element method for steel structures. The major value brought in the practical design is the simplicity of the proposed method for steel structures.

초공동(超空洞) 유동 문제의 형상 설계민감도 해석 (Shape Design Sensitivity Analysis of Supercavitating Flow Problem)

  • 최주호;곽현구
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1047-1052
    • /
    • 2004
  • An efficient boundary-based technique is developed for addressing shape design sensitivity analysis in supercavitating flow problem. An analytical sensitivity formula in the form of a boundary integral is derived based on the continuum formulation for a general functional defined in potential flow problems. The formula, which is expressed in terms of the boundary solutions and shape variation vectors, can be conveniently used for gradient computation in a variety of shape design in potential flow problems. While the sensitivity can be calculated independent of the analysis means, such as the finite element method (FEM) or the boundary element method (BEM), the FEM is used for the analysis in this study because of its popularity and easy-touse features. The advantage of using a boundary-based method is that the shape variation vectors are needed only on the boundary, not over the whole domain. The boundary shape variation vectors are conveniently computed by using finite perturbations of the shape geometry instead of complex analytical differentiation of the geometry functions. The supercavitating flow problem is chosen to illustrate the efficiency of the proposed methodology. Implementation issues for and optimization procedure are addressed in this flow problem.

  • PDF

A novel sensitivity method to structural damage estimation in bridges with moving mass

  • Mirzaee, Akbar;Shayanfar, Mohsenali;Abbasnia, Reza
    • Structural Engineering and Mechanics
    • /
    • 제54권6호
    • /
    • pp.1217-1244
    • /
    • 2015
  • In this research a theoretical and numerical study on a bridge damage detection procedure is presented based on vibration measurements collected from a set of accelerometers. This method, referred to as "Adjoint Variable Method", is a sensitivity-based finite element model updating method. The approach relies on minimizing a penalty function, which usually consists of the errors between the measured quantities and the corresponding predictions attained from the model. Moving mass is an interactive model and includes inertia effects between the model and mass. This interactive model is a time varying system and the proposed method is capable of detecting damage in this variable system. Robustness of the proposed method is illustrated by correct detection of the location and extension of predetermined single, multiple and random damages in all ranges of speed and mass ratio of moving vehicle. A comparative study on common sensitivity and the proposed method confirms its efficiency and performance improvement in sensitivity-based damage detection methods. In addition various possible sources of error, including the effects of measurement noise and initial assumption error in stability of method are also discussed.

하이브리드 자동차용 엔진 내부의 전자식 수온조절기의 감온성 및 유량제어 정확도 향상을 위한 수치 및 실험적 연구 (Numerical and Experimental Study to Improve Thermal Sensitivity and Flow Control Accuracy of Electronic Thermostat in the Engine for Hybrid Vehicle)

  • 정수진;정진우;하승찬
    • 한국분무공학회지
    • /
    • 제26권3호
    • /
    • pp.135-141
    • /
    • 2021
  • High-efficient HEV Engine cooling systems reflects variable coolant temperature because it can decrease the hydrodynamic frictional losses of lubricated engine parts in light duty conditions. In order to safely raise the operating temperature of passenger cars to a constant higher level, and thus optimize combustion and all accompanying factors, a new thermostat technology was developed : the electronically map-controlled thermostat. In this work, various crystalline plastics such as polyphthalamide (PPA) and polyphenylenesulfide (PPS) mixed with various glass fiber amounts were introduced into plastic fittings of automotive electronic controlled thermostat for the purpose of suppressing influx of coolant into the element and undesirable opening during hot soaking. Skirt was installed around element frame of automotive electronic controlled thermostat for improving thermal sensitivity in terms of response time, hysteresis and melting temperature. To validate the effectiveness and optimum shape of skirt, thermal sensitivity test and three-dimensional CFD simulation have been performed. As a consequence, important improvement in thermal sensitivity with less than 3℃ of maximum coolant temperature between opening and engine inlet was obtained.

스프링클러헤드 감열부의 열적 특성에 관한 연구 (An Investigation on the Thermal Characteristics of Heat-Responsive Element of Sprinkler Head)

  • 유우준;문효준;염문천;유홍선
    • 한국화재소방학회논문지
    • /
    • 제26권3호
    • /
    • pp.79-84
    • /
    • 2012
  • 본 연구에서는 국내외 스프링클러헤드 감도시험 기준에 적용하고 있는 반응시간지수(RTI, Response Time Index)를 사용하여 대류항과 전도항 그리고 시간 변화량을 고려한 감열부의 열전달 현상을 해석적으로 분석하였다. 원형 실린더 형상을 갖는 감열부의 열적 특성을 분석하기 위해서 비제차 2차 편미분 형태의 에너지 방정식을 사용하여 감열부 표면의 온도가 일정하고 대칭(Symmetric)인 경계조건을 적용하여 시간 증가에 대한 감열부의 반지름 방향 온도분포를 구하였다. 그 결과 본 연구의 감열부 열적 특성에 관한 분석 기법은 스프링클러헤드의 감도시험 및 감열부의 설계를 위한 자료의 활용이 가능할 것으로 판단된다.

Single and High-Lift Airfoil Design Optimization Using Aerodynamic Sensitivity Analysis

  • Kim, Chang Sung;Lee, Byoungjoon;Kim, Chongam;Rho, Oh-Hyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제2권1호
    • /
    • pp.20-27
    • /
    • 2001
  • Aerodynamic sensitivity analysis is performed for the Navier-Stokes equations coupled with two-equation turbulence models using a discrete adjoint method and a direct differentiation method respectively. Like the mean flow equations, the turbulence model equations are also hand-differentiated to accurately calculate the sensitivity derivatives of flow quantities with respect to design variables in turbulent viscous flows. The sensitivity codes are then compared with the flow solver in terms of solution accuracy, computing time and computer memory requirements. The sensitivity derivatives obtained from the sensitivity codes with different turbulence models are compared with each other. The capability of the present sensitivity codes to treat complex geometry is successfully demonstrated by analyzing the flows over multi-element airfoils on Chimera overlaid grid systems.

  • PDF

직접미분 설계민감도 해석을 이용한 박판금속성형 공정변수 최적화 (II) -공정 변수 최적화- (Optimum Design of the Process Parameter in Sheet Metal Forming with Design Sensitivity Analysis using the Direct Differentiation Approach (II) -Optimum Process Design-)

  • 김세호;허훈
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2262-2269
    • /
    • 2002
  • Process optimization is carried out to determine process parameters which satisfy the given design requirement and constraint conditions in sheet metal forming processes. Sensitivity -based-approach is utilized for the optimum searching of process parameters in sheet metal forming precesses. The scheme incorporates an elasto-plastic finite element method with shell elements . Sensitivities of state variables are calculated from the direct differentiation of the governing equation for the finite element analysis. The algorithm developed is applied to design of the variablc blank holding force in deep drawing processes. Results show that determination of process parameters is well performed to control the major strain for preventing fracture by tearing or to decrease the amount of springback for improving the shape accuracy. Results demonstrate that design of process parameters with the present approach is applicable to real sheet metal forming processes.

충진층 흡착관 내에서 입상활성탄에 의한 페놀 제거 : 매개변수 감응도 해석 (Removal of Phenol by Granular Activated Carbon from Aqueous Solution in Fixed-Bed Adsorption Column : Parameter Sensitivity Analysis)

  • 윤영삼;황종연;권성헌;김인실;박판욱
    • 한국환경과학회지
    • /
    • 제7권6호
    • /
    • pp.773-782
    • /
    • 1998
  • The adsorption experiment of phenol(Ph) from aqueous solution on granular activated carbon was studied in order to design the fixed-bed adsorption column. The experimental data were analyzed by unsteady-state, one-dimensional heterogeneous model. Finite element method(FEM) was applied to analyze the sensitivity of parameter and to predict the fixed-bed adsorption column performance on operation variable changes. The prediction model showed similar effect to mass transfer and intraparticle diffusion coefficient changes suggesting that both parameter present mass transfer rate limits for GAC-phenol system. The Freundlich constants had a greater effect than kinetic parameters for the performance of fixed-bed adsorption column. FEM solution facilitated prediction of concentration history in solution and within adsorbent particle.

  • PDF