• Title/Summary/Keyword: sensitive period

Search Result 639, Processing Time 0.033 seconds

Body Weight Changes of Laboratory Animals during Transportation

  • Lee, Sung-Hak;Nam, Hyun-Sik;Kim, Jin-Sung;Cho, Hye-Jung;Jang, Yu-Mi;Lee, Eun-Jung;Choi, Eun-Sung;Jin, Dong-Il;Moon, Hong-Sik
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.2
    • /
    • pp.286-290
    • /
    • 2012
  • The majority of laboratory animals were transported from commercial breeders to a research facility by ground transportation. During the transportation, many biological functions and systems can be affected by stress. In this experiment, the change of body weight during the transportation was measured and the recovery periods from the transportation stress established based on the body weight changes. Total 676 laboratory animals which were aged between 3 to 9 wk old were studied. The transportation time taken from container packing to unpacking the container was approximately 24 h. The temperature of animal container was constantly maintained by air-conditioning and heating equipment. Rats were found to be more sensitive than mice. The body weight of rats was significantly decreased 3.71% (p<0.05) compared to the body weight of mice which decreased 0.9% There was no significant difference between the strains in the same species. When the changes of body weights were compared between delivery days, C57BL/6 mice showed the most variable changes compared to other species and strains. Consequently, C57BL/6 was more sensitive to stress than the other strains and the transportation process needs to be standardized to reduce between day variability. To establish the recovery periods from transportation stress, the body weight changes were measured during the acclimation period. Although the body weight of animals decreased during transportation, animals recovered their weight loss after the next day.

Sensitivity Analysis of Climate Factors on Runoff and Soil Losses in Daecheong Reservoir Watershed using SWAT (SWAT 모형을 이용한 대청댐 유역의 기후인자에 따른 유출 및 유사량 민감도 평가)

  • Ye, Lyeong;Chung, Se-Woong;Lee, Heung-Soo;Yoon, Sung-Wan;Jeong, Hee-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.7-17
    • /
    • 2009
  • Soil and Water Assessment Tool (SWAT) was used to assess the impact of potential future climate change on the water cycle and soil loss of the Daecheong reservoir watershed. A sensitivity analysis using influence coefficient method was conducted for two selected hydrological input parameters and three selected sediment input parameters to identify the most to the least sensitive parameters. A further detailed sensitivity analysis was performed for the parameters: Manning coefficient for channel (Cn), evaporation (ESCO), and sediment concentration in lateral (LAT_SED), support practice factor (USLA_P). Calibration and verification of SWAT were performed on monthly basis for 1993~2006 and 1977~1991, respectively. The model efficiency index (EI) and coefficient of determination ($R^2$) computed for the monthly comparisons of runoffs were 0.78 and 0.76 for the calibration period, and 0.58 and 0.65 for the verification period. The results showed that the hydrological cycle in the watershed is very sensitive to climate factors. A doubling of atmospheric $CO_2$ concentrations was predicted to result in an average annual flow increase of 27.9% and annual sediment yield increase of 23.3%. Essentially linear impacts were predicted between two precipitation change scenarios of -20, and 20%, which resulted in average annual flow and sediment yield changes at Okcheon of -53.8%, 63.0% and -55.3%, 65.8%, respectively. An average annual flow increase of 46.3% and annual sediment yield increase of 36.4% was estimated for a constant humidity increase 5%. An average annual flow decrease of 9.6% and annual sediment yield increase of 216.4% was estimated for a constant temperature increase $4^{\circ}C$.

Effect of Aging on the Chemical Forms and Phytotoxicity of Arsenic in Soil (비소 오염기간이 토양 내 비소의 존재형태와 식물독성에 미치는 영향)

  • Yang, Woojin;Jho, Eun Hea;Im, Jinwoo;Jeong, Seulki;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.3
    • /
    • pp.82-87
    • /
    • 2016
  • This study investigates effects of an aging period on arsenic (As) chemical forms in soils and phytotoxicity using artificially As-contaminated soils with a range of As concentrations (0-300 mg/kg) and aging periods (0 and 3 months). A sequential extraction procedure showed that the increasing As concentration in soils increased the ratio of non-specifically and specifically bound As, which are known to be bioavailable. This resulted in increasing As uptake by tomatoes with increasing As concentration (R2=0.87 for exponential fitting); however, the seed germination was not sensitive to the As concentrations of the soil samples. The seed germination was also statistically similar in the soils with 75 and 150 mg-As/kg regardless of the aging period. The time taken until the seed germination (i.e., lag phase), on the other hand, decreased from 10 d to 3 d with aging for 3 months. This can be attributed to the decreased amount of bioavailable As with aging. Overall, this study shows that when the toxic effects of the As-contaminated soils are assessed using tomato plants, it is better to use more sensitive methods than seed germination such as the As accumulation or the lag phase for seed germination.

Enhancing streamflow prediction skill of WRF-Hydro-CROCUS with DDS calibration over the mountainous basin.

  • Mehboob, Muhammad Shafqat;Lee, Jaehyeong;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.137-137
    • /
    • 2021
  • In this study we aimed to enhance streamflow prediction skill of a land-surface hydrological model, WRF-Hydro, over one of the snow dominated catchments lies in Himalayan mountainous range, Astore. To assess the response of the Himalayan river flows to climate change is complex due to multiple contributors: precipitation, snow, and glacier melt. WRF-Hydro model with default glacier module lacks generating streamflow in summer period but recently developed WRF-Hydro-CROCUS model overcomes this issue by melting snow/ice from the glaciers. We showed that by implementing WRF-Hydro-CROCUS model over Astore the results were significantly improved in comparison to WRF-Hydro with default glacier module. To constraint the model with the observed streamflow we chose 17 sensitive parameters of WRF-Hydro, which include groundwater parameters, surface runoff parameters, channel parameters, soil parameters, vegetation parameters and snowmelt parameters. We used Dynamically Dimensioned Search (DDS) method to calibrate the daily streamflow with the Nash-Sutcliffe efficiency (NSE) being greater than 0.7 both in calibration (2009-2010) and validation (2011-2013) period. Based on the number of iterations per parameter, we found that the parameters related to channel and runoff process are most sensitive to streamflow. The attempts to address the responses of the streamflows to climate change are still very weak and vague especially northwest Himalayan Part of Pakistan and this study is one of a few successful applications of process-based land-surface hydrologic model over this mountainous region of UIB that can be utilized to have an in-depth understanding of hydrological responses of climate change.

  • PDF

Differential Growth of the Reproductive Organs during the Peripubertal Period in Male Rats

  • Han, Seung Hee;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.17 no.4
    • /
    • pp.469-475
    • /
    • 2013
  • In mammals, puberty is a process of acquiring reproductive competence, triggering by activation of hypothalamic kisspeptin (KiSS)-gonadotropin releasing hormone (GnRH) neuronal circuit. During peripubertal period, not only the external genitalia but the internal reproductive organs have to be matured in response to the hormonal signals from hypothalamic-pituitary-gonadal (H-P-G) axis. In the present study, we evaluated the maturation of male rat accessory sex organs during the peripubertal period using tissue weight measurement, histological analysis and RT-PCR assay. Male rats were sacrificed at 25, 30, 35, 40, 45, 50, and 70 postnatal days (PND). The rat accessory sex organs exhibited differential growth patterns compared to those of non-reproductive organs. The growth rate of the accessory sex organs were much higher than the those of non-reproductive organs. Also, the growth spurts occurred differentially even among the accessory sex organs; the order of prepubertal organ growth spurts is testis = epididymis > seminal vesicle = prostate. Histological study revealed that the presence of sperms in seminiferous tubules and epididymal ducts at day 50, indicating the puberty onset. The number of duct and the volume of duct in epididymis and prostate were inversely correlated during the experimental period. Our RT-PCR revealed that the levels of hypothalamic GnRH transcript were increased significantly on PND 40, suggesting the activation of hypothalamic GnRH pulse-generator before puberty onset. Studies on the peripubertal male accessory sex organs will provide useful references on the growth regulation mechanism which is differentially regulated during the period in androgen-sensitive organs. The detailed references will render easier development of endocrine disruption assay.

The Effect of Storage Period and Temperature on Egg Quality in Commercial Eggs

  • Lee, Min Hee;Cho, Eun Jung;Choi, Eun Sik;Sohn, Sea Hwan
    • Korean Journal of Poultry Science
    • /
    • v.43 no.1
    • /
    • pp.31-38
    • /
    • 2016
  • Consumers demand fresh and high-quality eggs. Egg quality may be represented by shell color, shell weight, egg weight, shell thickness, shell density, albumen height, yolk color, albumen pH and viscosity. Various factors such as strain, age of hen, storage temperature, humidity, the presence of $CO_2$ and storage time affect egg quality. Therefore, we investigated the effects of storage time and temperature on egg quality to define the freshness of Korean market eggs. A total of 1,800 eggs were used for this experiment and were separated into 45 treatments with 40 eggs in each. The treatments were consisted of 15 storage periods (2 d to 30 d) and 3 storage temperatures ($2^{\circ}C$, $12^{\circ}C$, $25^{\circ}C$). Each egg was weighed and broken, and the height of the thick albumen, Haugh units (HU), egg shell color and yolk color were measured by a QCM+system. We also observed the physiochemical properties of eggs such as yolk pH, albumen pH and albumen viscosity. The egg weight, shell weight, albumen height, HU and albumen viscosity significantly decreased with increasing storage time and temperature. However, the albumen and yolk pH significantly increased with increasing storage period and temperature. The interaction effects between the storage period and temperature were significant for shell weight, shell density, egg weight, albumen height, HU, yolk color, yolk pH, albumen pH and albumen viscosity. In the analysis of the correlation with egg quality, the storage temperature exhibited a higher correlation coefficient than the storage period. In conclusion, storage time and temperature are the major factors affecting egg quality, but the storage temperature is a more sensitive determinant of egg quality deterioration compared with the storage period.

Health Care Experiences of Vietnamese Marriage Immigrant Women during Pregnancy, Childbirth, and Postpartum Period in Korea (베트남 결혼이주여성의 임신, 분만, 산욕기 건강관리 경험)

  • Kim, Sun-Hee
    • Journal of Korean Public Health Nursing
    • /
    • v.29 no.2
    • /
    • pp.325-343
    • /
    • 2015
  • Purpose: This study was conducted in order to identify and describe the experiences of health care during pregnancy, birthing, and postpartum period for Vietnamese marriage immigrants. Methods: The participants were 15 Vietnamese married immigrant women who became pregnant and gave birth within the last five years. Data were collected by in-depth interview with Vietnamese women. Data were analyzed using Colaizzi's method of phenomenology. Results: Six theme clusters were extracted as follows: 'being left with no other option in loneliness and longing filled in a limited life', 'continued trials and errors amidst frustration and fear', 'silently following orders despite the quality of medical services that change with each medical care provider', 'compromise by selecting amidst confusion between the Korean way and the way at home', 'depending on family, who is the communication channel, but becoming disappointed', and 'finding the reason for existence and struggling by herself to become a mother amidst doubled confusion'. Conclusion: A program for effective empowerment of Vietnamese immigrant women should be developed. In addition multicultural family centered programs should be developed with emphasis on acceptance of women's culture, respect for her culture, and supports. Medical staffs and nurses should also improve culturally sensitive competence in order to provide care for immigrant women.

Effect of curing treatments on the material properties of hardened self-compacting concrete

  • Salhi, M.;Ghrici, M.;Li, A.;Bilir, T.
    • Advances in concrete construction
    • /
    • v.5 no.4
    • /
    • pp.359-375
    • /
    • 2017
  • This paper presents a study of the properties and behavior of self-compacting concretes (SCC) in the hot climate. The effect of curing environment and the initial water curing period on the properties and behavior of SCC such as compressive strength, ultrasonic pulse velocity (UPV) and sorptivity of the SCC specimens were investigated. Three Water/Binder (W/B) ratios (0.32, 0.38 and 0.44) have been used to obtain three ranges of compressive strength. Five curing methods have been applied on the SCC by varying the duration and the conservation condition of SCC. The results obtained on the compressive strength show that the period of initial water curing of seven days followed by maturation in the hot climate is better in comparison with the four other curing methods. The coefficient of sorptivity is influenced by W/B ratio and the curing methods. It is also shown that the sorptivity coefficient of SCC specimens is very sensitive to the curing condition. The SCC specimens cured in water present a low coefficient of sorptivity regardless of the ratio W/B. Furthermore, the results show that there is a good correlation between ultrasonic pulse velocity and the compressive strength.

Absolute calibration of near-infrared Period-Luminosity-Metallicity relations for RR Lyrae variables using Gaia EDR3

  • Bhardwaj, Anupam;Rejkuba, Marina;Yang, Soung-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.35.1-35.1
    • /
    • 2021
  • RR Lyrae stars are sensitive probe for the precision stellar astrophysics and also for the cosmic distance scale thanks to their well-defined near-infrared Period-Luminosity relations (PLRs). These horizontal branch variables can be used for primary calibration of the first-rung of population II distance ladder providing an evaluation of the ongoing tension between Cepheid-Supernovae based Hubble constant and the Planck results. Therefore, absolute calibration of RR Lyrae PLRs is now crucial to complement or test the tip of the red giant branch based distances, and in turn, population II star based Hubble constant measurements. While the pulsation models of RR Lyrae can reproduce most observables, they predict a significant metallicity effect on their JHKs-band PLRs that is inconsistent with so-far limited observational studies. We remedy this inconsistency of metallicity dependence in RR Lyrae PLRs by combining their near-infrared observations in the globular clusters of different mean-metallicities with the new parallaxes from the Gaia early data release 3 (EDR3). Our empirical results on Period-Luminosity-Metallicity (PLZ)relations are consistent with theoretical predictions but the precision of absolute calibrations is still affected by the parallax uncertainties and the systematic zero-point offset present in the Gaia EDR3.

  • PDF

Probabilistic sensitivity analysis of multi-span highway bridges

  • Bayat, M.;Daneshjoo, F.;Nistico, N.
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.237-262
    • /
    • 2015
  • In this study, we try to compare different intensity measures for evaluating nonlinear response of bridge structure. This paper presents seismic analytic fragility of a three-span concrete girder highway bridge. A complete detail of bridge modeling parameters and also its verification has been presented. Fragility function considers the relationship of intensities of the ground motion and probability of exceeding certain state of damage. Incremental dynamic analysis (IDA) has been subjected to the bridge from medium to strong ground motions. A suite of 20 earthquake ground motions with different range of PGAs are used in nonlinear dynamic analysis of the bridge. Complete sensitive analyses have been done on the response of bridge and also efficiency and practically of them are studied to obtain a proficient intensity measure for these types of structure by considering its sensitivity to the period of the bridge. Three dimensional finite element (FE) model of the bridge is developed and analyzed. The numerical results show that the bridge response is very sensitive to the earthquake ground motions when PGA and Sa (Ti, 5%) are used as intensity measure (IM) and also indicated that the failure probability of the bridge system is dominated by the bridge piers.