• Title/Summary/Keyword: sensing time

Search Result 2,591, Processing Time 0.031 seconds

Optimal Sensing Time for Maximizing the Throughput of Cognitive Radio Using Superposition Cooperative Spectrum Sensing

  • Vu-Van, Hiep;Koo, Insoo
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.4
    • /
    • pp.221-227
    • /
    • 2015
  • Spectrum sensing plays an essential role in a cognitive radio network, which enables opportunistic access to an underutilized licensed spectrum. In conventional cooperative spectrum sensing (CSS), all cognitive users (CUs) in the network spend the same amount of time on spectrum sensing and waste time in remaining silent when other CUs report their sensing results to the fusion center. This problem is solved by the superposition cooperative spectrum sensing (SPCSS) scheme, where the sensing time of a CU is extended to the reporting time of the other CUs. Subsequently, SPCSS assigns the CUs different sensing times and thus affects both the sensing performance and the throughput of the system. In this paper, we propose an algorithm to determine the optimal sensing time of each CU for SPCSS that maximizes the achieved system throughput. The simulation results prove that the proposed scheme can significantly improve the throughput of the cognitive radio network compared with the conventional CSS.

Opportunistic Reporting-based Sensing-Reporting-Throughput Optimization Scheme for Cooperative Cognitive Radio Networks

  • So, Jaewoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1319-1335
    • /
    • 2017
  • This paper proposes an opportunistic reporting-based sensing-reporting-throughput optimization scheme that maximizes the spectral efficiency of secondary users (SUs) in cooperative cognitive radio networks with a soft combining rule. The performance of cooperative spectrum sensing depends on the sensing time, the reporting time of transmitting sensing results, and the fusion scheme. While longer sensing time and reporting time improve the sensing performance, this shortens the allowable data transmission time, which in turn degrades the spectral efficiency of SUs. The proposed scheme adopts an opportunistic reporting scheme to restrain the reporting overhead and it jointly controls the sensing-reporting overhead in order to increase the spectral efficiency of SUs. We show that there is a trade-off between the spectral efficiency of SUs and the overheads of cooperative spectrum sensing. The numerical results demonstrate that the proposed scheme significantly outperforms the conventional sensing-throughput optimization schemes when there are many SUs. Moreover, the numerical results show that the sensing-reporting time should be jointly optimized in order to maximize the spectral efficiency of SUs.

Super-allocation and Cluster-based Cooperative Spectrum Sensing in Cognitive Radio Networks

  • Miah, Md. Sipon;Yu, Heejung;Rahman, Md. Mahbubur
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3302-3320
    • /
    • 2014
  • An allocation of sensing and reporting times is proposed to improve the sensing performance by scheduling them in an efficient way for cognitive radio networks with cluster-based cooperative spectrum sensing. In the conventional cooperative sensing scheme, all secondary users (SUs) detect the primary user (PU) signal to check the availability of the spectrum during a fixed sensing time slot. The sensing results from the SUs are reported to cluster heads (CHs) during the reporting time slots of the SUs and the CHs forward them to a fusion center (FC) during the reporting time slots of the CHs through the common control channels for the global decision, respectively. However, the delivery of the local decision from SUs and CHs to a CH and FC requires a time which does not contribute to the performance of spectrum sensing and system throughput. In this paper, a super-allocation technique, which merges reporting time slots of SUs and CHs to sensing time slots of SUs by re-scheduling the reporting time slots, has been proposed to sense the spectrum more accurately. In this regard, SUs in each cluster can obtain a longer sensing duration depending on their reporting order and their clusters except for the first SU belonged to the first cluster. The proposed scheme, therefore, can achieve better sensing performance under -28 dB to -10 dB environments and will thus reduce reporting overhead.

Optimal Adaptive Multiband Spectrum Sensing in Cognitive Radio Networks

  • Yu, Long;Wu, Qihui;Wang, Jinlong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.984-996
    • /
    • 2014
  • In this paper, optimal sensing time allocation for adaptive multiband spectrum sensing-transmission procedure is investigated. The sensing procedure consists of an exploration phase and a detection phase. We first formulate an optimization problem to maximize the throughput by designing not only the overall sensing time, but also the sensing time for every stage in the exploration and detection phases, while keeping the miss detection probability for each channel under a pre-defined threshold. Then, we transform the initial non-convex optimization problem into a convex bilevel optimization problem to make it mathematically tractable. Simulation results show that the optimized sensing time setting in this paper can provide a significant performance gain over the previous studies.

Block-Time of Arrival/Leaving Estimation to Enhance Local Spectrum Sensing under the Practical Traffic of Primary User

  • Tran, Truc Thanh;Kong, Hyung Yun
    • Journal of Communications and Networks
    • /
    • v.15 no.5
    • /
    • pp.514-526
    • /
    • 2013
  • With a long sensing period, the inter-frame spectrum sensing in IEEE 802.22 standard is vulnerable to the effect of the traffic of the primary user (PU). In this article, we address the two degrading factors that affect the inter-frame sensing performance with respect to the random arrival/leaving of the PU traffic. They are the noise-only samples under the random arrival traffic, and the PU-signal-contained samples under the random leaving traffic. We propose the model in which the intra-frame sensing cooperates with the inter-frame one, and the inter-frame sensing uses the time-of-arrival (ToA), and time-of-leave (ToL) detectors to reduce the two degrading factors in the inter-frame sensing time. These ToA and ToL detectors are used to search for the sample which contains either the ToA or ToL of the PU traffic, respectively, which allows the partial cancelation of the unnecessary samples. At the final stage, the remaining samples are input into a primary user detector, which is based on the energy detection scheme, to determine the status of PU traffic in the inter-frame sensing time. The analysis and the simulation results show that the proposed scheme enhances the spectrum-sensing performance compared to the conventional counter-part.

A Spectrum Sensing Scheme Based on Sensing Time Partitioning for High Traffic Environments (통화량이 많은 상황에서의 알맞은 센싱 구간 분할 기반 스펙트럼 센싱 기법)

  • Chae, Keunhong;Yoon, Seokho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.10
    • /
    • pp.838-844
    • /
    • 2013
  • In this paper, we propose a novel spectrum sensing scheme based on sensing time partitioning for cognitive radio systems in high traffic environments. Specifically, we partition a sensing time into K sub-sections, and then, propose a spectrum sensing scheme that determines if a primary user signal is present based on the sensing results on the partitioned sub-sections. From numerical results, it is confirmed that the proposed scheme outperforms the conventional schemes in high traffic environments.

Sensing Optimization for an Receiver Structure in Cognitive Radio Systems

  • Kang, Bub-Joo;Nam, Yoon-Seok
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.1
    • /
    • pp.27-31
    • /
    • 2011
  • This paper describes the optimization of spectrum sensing in terms of the throughput of a cognitive radio (CR) system. Dealing with the optimization problem of spectrum sensing, this paper evaluates the throughput of a CR system by considering such situations as the penalty time of a channel search and incumbent user (IU) detection delay caused by a missed detection of an incumbent signal. Also, this paper suggests a serial channel search scheme as the search method for a vacant channel, and derives its mean channel search time by considering the penalty time due to the false alarm of a vacant channel search. The numerical results suggest the optimum sensing time of the channel search process using the derived mean channel search time of a serial channel search in the case of a sensing hardware structure with single radio frequency (RF) path. It also demonstrates that the average throughput is improved by two separate RF paths in spite of the hardware complexity of an RF receiver.

Quickest Spectrum Sensing Approaches for Wideband Cognitive Radio Based On STFT and CS

  • Zhao, Qi;Qiu, Wei;Zhang, Boxue;Wang, Bingqian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1199-1212
    • /
    • 2019
  • This paper proposes two wideband spectrum sensing approaches: (i) method A, the cumulative sum (CUSUM) algorithm with short-time Fourier transform, taking advantage of the time-frequency analysis for wideband spectrum. (ii)method B, the quickest spectrum sensing with short-time Fourier transform and compressed sensing, shortening the time of perception and improving the speed of spectrum access or exit. Moreover, method B can take advantage of the sparsity of wideband signals, sampling in the sub-Nyquist rate, and it is more suitable for wideband spectrum sensing. Simulation results show that method A significantly outperforms the single serial CUSUM detection for small SNRs, while method B is substantially better than the block detection based spectrum sensing in small probability of the false alarm.

Optimal cooperative sensing scheme in cognitive radio communication systems (무선인지통신 시스템에서 최적 협업 센싱 방식)

  • Lee, Dong-Jun;Lee, Myeong-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.5
    • /
    • pp.429-436
    • /
    • 2008
  • In this paper, we study an optimization which determines the optimal sensing time and the number of cooperative sensing cognitive users for cooperative spectrum sensing scheme in cognitive radio networks. In cooperative spectrum sensing, cognitive users originally in inactive status are activated and take part in spectrum sensing along with transmitting cognitive users resulting in a reduced sensing time. Tradeoff between transmission rate gain and energy consumption due to cooperative sensing is formulated as a mixed integer programming problem which is solved for the optimal values.

  • PDF

Saturation Prediction for Crowdsensing Based Smart Parking System

  • Kim, Mihui;Yun, Junhyeok
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1335-1349
    • /
    • 2019
  • Crowdsensing technologies can improve the efficiency of smart parking system in comparison with present sensor based smart parking system because of low install price and no restriction caused by sensor installation. A lot of sensing data is necessary to predict parking lot saturation in real-time. However in real world, it is hard to reach the required number of sensing data. In this paper, we model a saturation predication combining a time-based prediction model and a sensing data-based prediction model. The time-based model predicts saturation in aspects of parking lot location and time. The sensing data-based model predicts the degree of saturation of the parking lot with high accuracy based on the degree of saturation predicted from the first model, the saturation information in the sensing data, and the number of parking spaces in the sensing data. We perform prediction model learning with real sensing data gathered from a specific parking lot. We also evaluate the performance of the predictive model and show its efficiency and feasibility.