• Title/Summary/Keyword: sensing system design

Search Result 697, Processing Time 0.026 seconds

Development and Wearability Evaluation of All-Fabric Integrated Smart Jacket for a Temperature-regulating System Based on User Experience Design (사용자 경험 중심의 섬유일체형 온도조절 스마트재킷 개발과 착용성 평가)

  • Kim, Sareum;Roh, Jung-Sim;Lee, Eun Young
    • Fashion & Textile Research Journal
    • /
    • v.18 no.3
    • /
    • pp.363-373
    • /
    • 2016
  • This study aims to develop an all-fabric integrated smart jacket in order to create a temperature-regulating system based on a user experience design. For this research, previous research technologies of a textile switch interface and a temperature-regulating system were utilized and a unifying technology for the all-fabric integrated smart jacket was developed which can provide the appropriate temperature environments to the human body. A self-heating textile was applied at the areas of the back and hood in the final tested jacket, and an embroidery circuit was developed in the form of a rectangle in the back and in both ears of the hood, taking into account the pattern of the jacket part where it was be applied and the embroidery production method. The textile switch interface was designed in a three-layer structure: an embroidery circuit line in a conductive yarn, an interval material, and a conductive sensing material, and it was made to work with the input and output sensors through the multiple input method. After the all-fabric integrated smart jacket was produced according to the pattern, all of the textile band lines for transmission were gathered and connected with a miniature module for controlling temperature and then integrated into the inside of the left chest pocket of the jacket. After the users put on this jacket, they were asked to assess the wearing satisfaction. Most of them reported a very low level of irritation and discomfort and said that the jacket was as comfortable as everyday clothing.

Analysis of Crane Accidents by Using a Man-Machine System Model (인간-기계 시스템 모델에 의한 크레인 사망재해 분석)

  • Park, Jae-Hee;Park, Tae-Joo;Lim, Hyun-Kyo;Seo, Eun-Hong
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.2 s.80
    • /
    • pp.59-66
    • /
    • 2007
  • As the need of handling heavy materials increases, various cranes are used in industries. However, the effectiveness of crane also entails industrial accidents such as falling, constriction etc. In fact, the number of fatal accidents caused by crane is still high in Korea. To find out the causes of the accidents in terms of human error, we developed a man-machine system model that consists of two axes; human information processing and crane life cycle. In the human information processing dimension, we simplified it as five functions; sensing and perception, decision making and memory, response etc. In the crane life cycle dimension, we divided it into nine phases; design, production, operation etc. For the 152 fatal accident records during 1999-2006 years, we classified them into 45 cells made by two axes. Then we identified the preceding causes of the classified crane accident based on performance shaping factors. As the results of statistical analysis, the overall trend of crane fatal accidents was described. For the cause analysis, wrong decision making in work plan phase shows the highest frequency. Next, the poor information input in crane operation followed in accident frequency. In ergonomics view, the problems of interface design in displays and controls made 11.8% of fatal accidents. Following the analysis, several ergonomic design guidelines to prevent crane accidents were suggested.

Sitting Posture-Based Lighting System to Enhance the Desired Mood

  • Bae, Hyunjoo;Kim, Haechan;Suk, Hyeon-Jeong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.2
    • /
    • pp.191-198
    • /
    • 2015
  • Objective: As a cue for desired mood, we attempted to identify types of sitting postures when people are involved in various tasks during their working hours. Background: Physical behaviors in reaction to user contexts were studied, such as automated posture analysis for detecting a subject's emotion. Sitting postures have high feasibility and can be detected robustly with a sensing chair, especially when it comes to an office. Method: First, we attached seven sensors, including six pressure sensors and one distance sensor, to an office chair. In Part 1, we recorded participants' postures while they took part in four different tasks. From the seven sensors, we gathered five sets of data related to the head, the lumbar, the hip, thigh pressure and the distance between the backrest and the body. We classified them into four postures: leaning forward, upright, upright with the lumbar supporting, and leaning backward. In part 2, we requested the subjects to take suitable poses for the each of the four task types. In this way, we compared the matches between postures and tasks in a natural setting to those in a controlled situation. Results: We derived four types of sitting postures that were mapped onto the different tasks. The comparison yielded no statistical significance between Parts 1 and 2. In addition, there was a significant association between the task types and the posture types. Conclusion: The users' sitting postures were related to different types of tasks. This study demonstrates how human emotion can interact with lighting, as mediated through physical behavior. Application: We developed a posture-based lighting system that manipulates the quality of office lighting and is operated by changes in one's posture. Facilitated by this system, color temperatures ranging between 3,000K and 7,000K and illuminations ranging between 300lx and 700lx were modulated.

Agile Attitude Control of Small Satellite using 5Nm Small CMG (5Nm급 소형 CMG를 이용한 소형위성 고기동 자세제어)

  • Rhee, Seung-Wu;Seo, Hyun-Ho;Yoon, Hyung-Joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.11
    • /
    • pp.952-960
    • /
    • 2018
  • Recently, lots of remote sensing satellite require agility to collect more images within the limited time frame. To satisfy this kind of mission requirement, high torque actuator such as CMG is an essential element. In this study, 5Nm class small CMG developed by KARI is introduced to implement for an agile small satellite design. One of the singularity escape CMG steering law, Designated Direction Escape (DDE) method, which is a sort of modified version of Singular Direction Avoidance (SDA) method is summarized for its application on the numerical simulation of agile attitude control system design result. The performance of DDE method is demonstrated properly by escaping well known elliptic internal singularity successfully. 5Nm class small CMG cluster in a pyramid type as well as a roof type configuration is utilized to perform the numerical simulation and to demonstrate its agility design result for a small satellite. Simulation result shows the properness of 5Nm small CMG to a small agile satellite system. Also, the simulation result provides some valuable information that is important to CMG hardware design and manufacturing.

A Coaxial and Off-axial Integrated Three-mirror Optical System with High Resolution and Large Field of View

  • Chen, Zhe;Zhu, Junqing;Peng, Jiantao;Zhang, Xingxiang;Ren, Jianyue
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.94-100
    • /
    • 2016
  • A novel optical design for high resolution, large field of view (FOV) and multispectral remote sensing is presented. An f/7.3 Korsch and two f/17.9 Cook three-mirror optical systems are integrated by sharing the primary and secondary mirrors, bias of the FOV, decentering of the apertures and reasonable structure arrangement. The aperture stop of the Korsch system is located on the primary mirror, while those of the Cook systems are on the exit pupils. High resolution image with spectral coverage from visible to near-infrared (NIR) can be acquired through the Korsch system with a focal length of 14 m, while wide-field imaging is accomplished by the two Cook systems whose focal lengths are both 13.24 m. The full FOV is 4°×0.13°, a coverage width of 34.9 km at the altitude of 500 km can then be acquired by push-broom imaging. To facilitate controlling the stray light, the intermediate images and the real exit pupils are spatially available. After optimization, a near diffraction-limited performance and a compact optical package are achieved. The sharing of the on-axis primary and secondary mirrors reduces the cost of fabrication, test, and manufacture effectively. Besides, the two tertiary mirrors of the Cook systems possess the same parameters, further cutting down the cost.

Design and Implementation of Real-Time Indirect Health Monitoring System for the Availability of Physical Systems and Minimizing Cyber Attack Damage (사이버 공격 대비 가동 물리장치에 대한 실시간 간접 상태감시시스템 설계 및 구현)

  • Kim, Hongjun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.6
    • /
    • pp.1403-1412
    • /
    • 2019
  • Effect of damage and loss cost for downtime is huge, if physical devices such as turbines, pipe, and storage tanks are in the abnormal state originated from not only aging, but also cyber attacks on the control and monitoring system like PLC (Programmable Logic Controller). To improve availability and dependability of the physical devices, we design and implement an indirect health monitoring system which sense temperature, acceleration, current, etc. indirectly, and put sensor data into Influx DB in real-time. Then, the actual performance of detecting abnormal state is shown using the indirect health monitoring system. Analyzing data are acquired using the real-time indirect health monitoring system, abnormal state and security threats can be double-monitored and lower maintenance cost utilizing prognostics and health management.

Control Variables of Remote Joint Analysis Realization on the M2M Case

  • Lim, Sung-Ryel;Choi, Bo-Yun;Lee, Hong-Chul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.98-115
    • /
    • 2012
  • New trend called ubiquitous leads the recent business by standardization and integration. It should be the main issue how to guarantee the integration and accountability on each business, especially in mission critical system which is mainly supported by M2M (Machine to Machine) control mechanism. This study is from the analysis of digital forensics case study that is from the M2M Sensing Control Mechanism problem of the "Imjin River" case in 2009, where a group of family is swept away to death by water due to M2M control error. The ubiquitous surroundings bring the changes in the field of criminal investigation to real time controls such as M2M systems. The needs of digital forensics on M2M control are increasing on every crime scene but we suffer from the lack of control metrics to get this done efficiently. The court asks for more accurately analyzed results accounting high quality product development design. Investigators in the crime scene need real-time analysis against the crime caused by poor quality of mission critical systems. It seems to be every need of Real-Time-Enterprise, so called ubiquitous society on the case. We try to find the efficiency and productivity in discovering non-functional design defects in M2M convergence products focusing on three metrics in study model with quick implementation. Digital forensics system in present status depends on know-how of each investigator and is hard to expect professional analysis on every field. This study set up a hypothesis "Co-working of professional investigators on each field will qualify Performance and Integrity" especially in mission critical system such as M2M and suggests "Online co-work analysis model" to efficiently detect and prevent mission critical errors in advance. At the conclusion, this study proved the statistical research that was surveyed by digital forensics specialists around M2M crime scene cases with quick implementation of dash board.

A Study on the Design Plan of UX for the Smart Healthcare for the Aged Society - Focused on IOT Technology (고령사회 스마트 헬스케어를 위한 UX 디자인방안 - 사물인터넷 기술을 중심으로)

  • Kim, Seung-Min
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.11
    • /
    • pp.462-474
    • /
    • 2018
  • The development of bio-sensing technology made it easy to collect various biometric information that was only available in large medical devices. The miniaturization of sensors makes it simple to carry out various health checkups that It did in person to the hospital by improving the portability of diagnostic devices. It is able to combine sensors into portable devices such as Smartphones, apply advanced Internet of Things (IOT) technology, and create new form factors for medical devices such as ultra-small modules that can be inserted or attached to their bodies. The results can be checked immediately through portable information devices such as smart phones. Although commercialization is still slow in Korea, new technologies are being applied in various ways in countries such as the United States that have granted remote medical services. Medical demand, supply and cost in South Korea are growing ahead of a super-aged society. Under these circumstances, attention is focusing on whether smart healthcare, a new concept, can complement the existing medical system. This study identifies the technology trends associated with smart health care and categorizes various healthcare products in the UX design aspects. In addition, the UX design approach and guidelines for applying smart healthcare technologies to the elderly, the intended users, are presented. This research will provide a reference to a new social issue, the UX-design approach to solving the problems of the aged society.

Implementation of Geosensor Interface using Object Oriented Design Pattern (객체지향 설계 유형에 의한 지오센서 인터페이스 구현)

  • Baek, Jeong-Ho;Lee, Hong-Ro
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.3
    • /
    • pp.193-206
    • /
    • 2006
  • This paper proposes The Efficient method that should design Geosensor model based on object oriented design pattern and implement the Geosensor network interface system using JBuilder. Such as geosensor technology will be to a new research paradigm of GIS which can manage a great quantity of field information by means of constructing the real time remote sensing network. The technology that integrates object oriented design pattern Geosensor interface network with GIS will be necessary elements that satisfy the function of GIS increasing day by day. Therefore, we would like to utilize GoF design pattern in order to change for the better object oriented Geosensor middleware. This paper shall contribute to implementing the optimal Geosensor interface that can develop reusable, modular and modifiable software by using the object oriented design pattern.

  • PDF

Non-imaging Optical Design of a Measurement Probe for LCD Display Used in a Color Analyzer (LCD 디스플레이용 색채계 렌즈에 관한 비결상 광학설계)

  • Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.5
    • /
    • pp.239-244
    • /
    • 2011
  • We introduce Gaussian (or paraxial) optics that can be successfully applied to design, for use in a color analyzer, a non-imaging optical system on a measurement probe for LCD display. The color analyzer is used to decompose colored lights leaving from some measurement area on the LCD display to red, green, and blue. The color analyzer must include a condenser lens whose purpose is to gather colored lights to illuminate a small area on the sensor. In order to satisfy a reduction ratio between the measurement area and the sensing area with a non-imaging condition, a condenser lens is analytically treated by means of Gaussian optics so that good understanding of the non-imaging condenser lens is achieved as a good design is derived. As a result, the technique shows the necessity of analytical treatment in contrast to the design approach using only commercial software such as CODE-V, Light-Tools, and others. Of course, CODE V and Light-Tools are also utilized in this paper to confirm and complete the Gaussian optical design.