• Title/Summary/Keyword: semiprime rings

Search Result 75, Processing Time 0.039 seconds

PRIME RADICALS OF SKEW LAURENT POLYNOMIAL RINGS

  • Han, Jun-Cheol
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.477-484
    • /
    • 2005
  • Let R be a ring with an automorphism 17. An ideal [ of R is ($\sigma$-ideal of R if $\sigma$(I).= I. A proper ideal P of R is ($\sigma$-prime ideal of R if P is a $\sigma$-ideal of R and for $\sigma$-ideals I and J of R, IJ $\subseteq$ P implies that I $\subseteq$ P or J $\subseteq$ P. A proper ideal Q of R is $\sigma$-semiprime ideal of Q if Q is a $\sigma$-ideal and for a $\sigma$-ideal I of R, I$^{2}$ $\subseteq$ Q implies that I $\subseteq$ Q. The $\sigma$-prime radical is defined by the intersection of all $\sigma$-prime ideals of R and is denoted by P$_{(R). In this paper, the following results are obtained: (1) For a principal ideal domain R, P$_{(R) is the smallest $\sigma$-semiprime ideal of R; (2) For any ring R with an automorphism $\sigma$ and for a skew Laurent polynomial ring R[x, x$^{-1}$; $\sigma$], the prime radical of R[x, x$^{-1}$; $\sigma$] is equal to P$_{(R)[x, x$^{-1}$; $\sigma$ ].

CHARACTERIZATIONS OF ELEMENTS IN PRIME RADICALS OF SKEW POLYNOMIAL RINGS AND SKEW LAURENT POLYNOMIAL RINGS

  • Cheon, Jeoung-Soo;Kim, Eun-Jeong;Lee, Chang-Ik;Shin, Yun-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.277-290
    • /
    • 2011
  • We show that the ${\theta}$-prime radical of a ring R is the set of all strongly ${\theta}$-nilpotent elements in R, where ${\theta}$ is an automorphism of R. We observe some conditions under which the ${\theta}$-prime radical of coincides with the prime radical of R. Moreover we characterize elements in prime radicals of skew Laurent polynomial rings, studying (${\theta}$, ${\theta}^{-1}$)-(semi)primeness of ideals of R.

P-STRONGLY REGULAR NEAR-RINGS

  • Dheena, P.;Jenila, C.
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.3
    • /
    • pp.483-488
    • /
    • 2012
  • In this paper we introduce the notion of P-strongly regular near-ring. We have shown that a zero-symmetric near-ring N is P-strongly regular if and only if N is P-regular and P is a completely semiprime ideal. We have also shown that in a P-strongly regular near-ring N, the following holds: (i) $Na$ + P is an ideal of N for any $a{\in}N$. (ii) Every P-prime ideal of N containing P is maximal. (iii) Every ideal I of N fulfills I + P = $I^2$ + P.

NOTES ON SYMMETRIC SKEW n-DERIVATION IN RINGS

  • Koc, Emine;Rehman, Nadeem ur
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1113-1121
    • /
    • 2018
  • Let R be a prime ring (or semiprime ring) with center Z(R), I a nonzero ideal of R, T an automorphism of $R,S:R^n{\rightarrow}R$ be a symmetric skew n-derivation associated with the automorphism T and ${\Delta}$ is the trace of S. In this paper, we shall prove that S($x_1,{\ldots},x_n$) = 0 for all $x_1,{\ldots},x_n{\in}R$ if any one of the following holds: i) ${\Delta}(x)=0$, ii) [${\Delta}(x),T(x)]=0$ for all $x{\in}I$. Moreover, we prove that if $[{\Delta}(x),T(x)]{\in}Z(R)$ for all $x{\in}I$, then R is a commutative ring.

JORDAN DERIVATIONS ON PRIME RINGS AND THEIR APPLICATIONS IN BANACH ALGEBRAS, II

  • Kim, Byung-Do
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.1
    • /
    • pp.65-87
    • /
    • 2014
  • The purpose of this paper is to prove that the noncommutative version of the Singer-Wermer Conjecture is affirmative under certain conditions. Let A be a noncommutative Banach algebra. We show that if there exists a continuous linear Jordan derivation D : A ${\rightarrow}$ A such that [D(x), x]$D(x)^3{\in}$ rad(A) for all $x{\in}A$, then D(A) ${\subseteq}$ rad(A).

JORDAN DERIVATIONS ON PRIME RINGS AND THEIR APPLICATIONS IN BANACH ALGEBRAS, I

  • Kim, Byung-Do
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.3
    • /
    • pp.535-558
    • /
    • 2013
  • The purpose of this paper is to prove that the noncommutative version of the Singer-Wermer Conjecture is affirmative under certain conditions. Let A be a noncommutative Banach algebra. Suppose there exists a continuous linear Jordan derivation $D:A{\rightarrow}A$ such that $D(x)^3[D(x),x]{\in}rad(A)$ for all $x{\in}A$. In this case, we show that $D(A){\subseteq}rad(A)$.

A NOTE ON SIMPLE SINGULAR GP-INJECTIVE MODULES

  • Nam, Sang Bok
    • Korean Journal of Mathematics
    • /
    • v.7 no.2
    • /
    • pp.215-218
    • /
    • 1999
  • We investigate characterizations of rings whose simple singular right R-modules are GP-injective. It is proved that if R is a semiprime ring whose simple singular right R-modules are GP-injective, then the center $Z(R)$ of R is a von Neumann regular ring. We consider the condition ($^*$): R satisfies $l(a){\subseteq}r(a)$ for any $a{\in}R$. Also it is shown that if R satisfies ($^*$) and every simple singular right R-module is GP-injective, then R is a reduced weakly regular ring.

  • PDF

SEMISIMPLE DIMENSION OF MODULES

  • Amirsardari, Bahram;Bagheri, Saeid
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.711-719
    • /
    • 2018
  • In this paper we define and study a new kind of dimension called, semisimple dimension, that measures how far a module is from being semisimple. Like other kinds of dimensions, this is an ordinal valued invariant. We give some interesting and useful properties of rings or modules which have semisimple dimension. It is shown that a noetherian module with semisimple dimension is an artinian module. A domain with semisimple dimension is a division ring. Also, for a semiprime right non-singular ring R, if its maximal right quotient ring has semisimple dimension as a right R-module, then R is a semisimple artinian ring. We also characterize rings whose modules have semisimple dimension. In fact, it is shown that all right R-modules have semisimple dimension if and only if the free right R-module ${\oplus}^{\infty}_{i=1}$ R has semisimple dimension, if and only if R is a semisimple artinian ring.

AN IDEAL-BASED ZERO-DIVISOR GRAPH OF 2-PRIMAL NEAR-RINGS

  • Dheena, Patchirajulu;Elavarasan, Balasubramanian
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1051-1060
    • /
    • 2009
  • In this paper, we give topological properties of collection of prime ideals in 2-primal near-rings. We show that Spec(N), the spectrum of prime ideals, is a compact space, and Max(N), the maximal ideals of N, forms a compact $T_1$-subspace. We also study the zero-divisor graph $\Gamma_I$(R) with respect to the completely semiprime ideal I of N. We show that ${\Gamma}_{\mathbb{P}}$ (R), where $\mathbb{P}$ is a prime radical of N, is a connected graph with diameter less than or equal to 3. We characterize all cycles in the graph ${\Gamma}_{\mathbb{P}}$ (R).

ON STRONG REVERSIBLE RINGS AND THEIR EXTENSIONS

  • Baser, Muhittin;Kwak, Tai Keun
    • Korean Journal of Mathematics
    • /
    • v.18 no.2
    • /
    • pp.119-132
    • /
    • 2010
  • P. M. Cohn called a ring R reversible if whenever ab = 0, then ba = 0 for $a,b{\in}R$. In this paper, we study an extension of a reversible ring with its endomorphism. An endomorphism ${\alpha}$ of a ring R is called strong right (resp., left) reversible if whenever $a{\alpha}(b)=0$ (resp., ${\alpha}(a)b=0$) for $a,b{\in}R$, ba = 0. A ring R is called strong right (resp., left) ${\alpha}$-reversible if there exists a strong right (resp., left) reversible endomorphism ${\alpha}$ of R, and the ring R is called strong ${\alpha}$-reversible if R is both strong left and right ${\alpha}$-reversible. We investigate characterizations of strong ${\alpha}$-reversible rings and their related properties including extensions. In particular, we show that every semiprime and strong ${\alpha}$-reversible ring is ${\alpha}$-rigid and that for an ${\alpha}$-skew Armendariz ring R, the ring R is reversible and strong ${\alpha}$-reversible if and only if the skew polynomial ring $R[x;{\alpha}]$ of R is reversible.