• Title/Summary/Keyword: semiprime ${\Gamma}$-ring

Search Result 3, Processing Time 0.014 seconds

DERIVATIONS WITH NILPOTENT VALUES ON Γ-RINGS

  • Dey, Kalyan Kumar;Paul, Akhil Chandra;Davvaz, Bijan
    • The Pure and Applied Mathematics
    • /
    • v.21 no.4
    • /
    • pp.237-246
    • /
    • 2014
  • Let M be a prime ${\Gamma}$-ring and let d be a derivation of M. If there exists a fixed integer n such that $(d(x){\alpha})^nd(x)=0$ for all $x{\in}M$ and ${\alpha}{\in}{\Gamma}$, then we prove that d(x) = 0 for all $x{\in}M$. This result can be extended to semiprime ${\Gamma}$-rings.

A GENERALIZED IDEAL BASED-ZERO DIVISOR GRAPHS OF NEAR-RINGS

  • Dheena, Patchirajulu;Elavarasan, Balasubramanian
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.161-169
    • /
    • 2009
  • In this paper, we introduce the generalized ideal-based zero-divisor graph structure of near-ring N, denoted by $\widehat{{\Gamma}_I(N)}$. It is shown that if I is a completely reflexive ideal of N, then every two vertices in $\widehat{{\Gamma}_I(N)}$ are connected by a path of length at most 3, and if $\widehat{{\Gamma}_I(N)}$ contains a cycle, then the core K of $\widehat{{\Gamma}_I(N)}$ is a union of triangles and rectangles. We have shown that if $\widehat{{\Gamma}_I(N)}$ is a bipartite graph for a completely semiprime ideal I of N, then N has two prime ideals whose intersection is I.