• Title/Summary/Keyword: semigroup ring

Search Result 15, Processing Time 0.026 seconds

PRUFER ${\upsilon}$-MULTIPLICATION DOMAINS IN WHICH EACH t-IDEAL IS DIVISORIAL

  • Hwang, Chul-Ju;Chang, Gyu-Whan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.259-268
    • /
    • 1998
  • We give several characterizations of a TV-PVMD and we show that the localization R[X;S]$_{N_{\upsilon}}$ of a semigroup ring R[X;S] is a TV-PVMD if and only if R is a TV-PVMD where $N_{\upsilon}\;=\;\{f\;{\in}\;R[X]{\mid}(A_f)_{\upsilon} = R\}$ and S is a torsion free cancellative semigroup with zero.

  • PDF

CONGRUENCE-FREE SIMPLE SEMIGROUP

  • Moon, Eunho L.
    • Korean Journal of Mathematics
    • /
    • v.13 no.2
    • /
    • pp.177-182
    • /
    • 2005
  • If a semigroup S has no nontrivial congruences then S is either simple or 0-simple.([2]) By contrast with ring theory, not every congruence on a semigroup is associated with an ideal, hence some simple(or 0-simple) semigroup may have a nontrivial congruence. Thus it is a short note for the characterization of a simple(or 0-simple) semigroup that is congruence-free. A semigroup that has no nontrivial congruences is said to be congruence-free.

  • PDF

SYMMETRIC AND PSEUDO-SYMMETRIC NUMERICAL SEMIGROUPS VIA YOUNG DIAGRAMS AND THEIR SEMIGROUP RINGS

  • Suer, Meral;Yesil, Mehmet
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1367-1383
    • /
    • 2021
  • This paper studies Young diagrams of symmetric and pseudo-symmetric numerical semigroups and describes new operations on Young diagrams as well as numerical semigroups. These provide new decompositions of symmetric and pseudo-symmetric semigroups into a numerical semigroup and its dual. It is also given exactly for what kind of numerical semigroup S, the semigroup ring 𝕜⟦S⟧ has at least one Gorenstein subring and has at least one Kunz subring.

THE CLASS GROUP OF D*/U FOR D AN INTEGRAL DOMAIN AND U A GROUP OF UNITS OF D

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.17 no.2
    • /
    • pp.189-196
    • /
    • 2009
  • Let D be an integral domain, and let U be a group of units of D. Let $D^*=D-\{0\}$ and ${\Gamma}=D^*/U$ be the commutative cancellative semigroup under aU+bU=abU. We prove that $Cl(D)=Cl({\Gamma})$ and that D is a PvMD (resp., GCD-domain, Mori domain, Krull domain, factorial domain) if and only if ${\Gamma}$ is a PvMS(resp., GCD-semigroup, Mori semigroup, Krull semigroup, factorial semigroup). Let U=U(D) be the group of units of D. We also show that if D is integrally closed, then $D[{\Gamma}]$, the semigroup ring of ${\Gamma}$ over D, is an integrally closed domain with $Cl(D[{\Gamma}])=Cl(D){\oplus}Cl(D)$; hence D is a PvMD (resp., GCD-domain, Krull domain, factorial domain) if and only if $D[{\Gamma}]$ is.

  • PDF

SEMIGROUP RINGS AS H-DOMAINS

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.19 no.3
    • /
    • pp.255-261
    • /
    • 2011
  • Let D be an integral domain, S be a torsion-free grading monoid such that the quotient group of S is of type (0, 0, 0, ${\ldots}$), and D[S] be the semigroup ring of S over D. We show that D[S] is an H-domain if and only if D is an H-domain and each maximal t-ideal of S is a $v$-ideal. We also show that if $\mathbb{R}$ is the eld of real numbers and if ${\Gamma}$ is the additive group of rational numbers, then $\mathbb{R}[{\Gamma}]$ is not an H-domain.

THE ANNIHILATING-IDEAL GRAPH OF A RING

  • ALINIAEIFARD, FARID;BEHBOODI, MAHMOOD;LI, YUANLIN
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1323-1336
    • /
    • 2015
  • Let S be a semigroup with 0 and R be a ring with 1. We extend the definition of the zero-divisor graphs of commutative semigroups to not necessarily commutative semigroups. We define an annihilating-ideal graph of a ring as a special type of zero-divisor graph of a semigroup. We introduce two ways to define the zero-divisor graphs of semigroups. The first definition gives a directed graph ${\Gamma}$(S), and the other definition yields an undirected graph ${\overline{\Gamma}}$(S). It is shown that ${\Gamma}$(S) is not necessarily connected, but ${\overline{\Gamma}}$(S) is always connected and diam$({\overline{\Gamma}}(S)){\leq}3$. For a ring R define a directed graph ${\mathbb{APOG}}(R)$ to be equal to ${\Gamma}({\mathbb{IPO}}(R))$, where ${\mathbb{IPO}}(R)$ is a semigroup consisting of all products of two one-sided ideals of R, and define an undirected graph ${\overline{\mathbb{APOG}}}(R)$ to be equal to ${\overline{\Gamma}}({\mathbb{IPO}}(R))$. We show that R is an Artinian (resp., Noetherian) ring if and only if ${\mathbb{APOG}}(R)$ has DCC (resp., ACC) on some special subset of its vertices. Also, it is shown that ${\overline{\mathbb{APOG}}}(R)$ is a complete graph if and only if either $(D(R))^2=0,R$ is a direct product of two division rings, or R is a local ring with maximal ideal m such that ${\mathbb{IPO}}(R)=\{0,m,m^2,R\}$. Finally, we investigate the diameter and the girth of square matrix rings over commutative rings $M_{n{\times}n}(R)$ where $n{\geq} 2$.

Relation between Clifford Semigroups and Abelian Regular Rings

  • Kim, Jupil;Baek, Sungdo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.7 no.1
    • /
    • pp.1-11
    • /
    • 1994
  • The theory of inverse semigroups has many features in common with the theory of groups. Many different properties of semigroup become the same condition on ring. In this paper, we want to find the properties of semigroups which is preserved by the properties of ring. Also we find that many different properties become the equivalent conditions.

  • PDF

THE DIRECT PRODUCT OF RIGHT CONGRUENCES

  • Oehmke, Robert-H.
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.3
    • /
    • pp.565-570
    • /
    • 1998
  • In a number of earlier papers the study of the structure of semigroups has been approached by means of right congruences. Such n approach seems appropriate since a right congruence is one of the possible analogs of both the right ideal of a ring and the subgroup in a group. Each of these substructures plays a strong role in the study of the structure of their respective systems. in both the ring and the group the internal direct product is nat-urally and effectively defined. however what such an internal direct product should be for two right congruences of a semigroup is not so clear. In this paper we will offer a possible definition and consider some of the consequences of it. We will also extend some of these results to automata.

REDUCED PROPERTY OVER IDEMPOTENTS

  • Kwak, Tai Keun;Lee, Yang;Seo, Young Joo
    • Korean Journal of Mathematics
    • /
    • v.29 no.3
    • /
    • pp.483-492
    • /
    • 2021
  • This article concerns the property that for any element a in a ring, if a2n = an for some n ≥ 2 then a2 = a. The class of rings with this property is large, but there also exist many kinds of rings without that, for example, rings of characteristic ≠2 and finite fields of characteristic ≥ 3. Rings with such a property is called reduced-over-idempotent. The study of reduced-over-idempotent rings is based on the fact that the characteristic is 2 and every nonzero non-identity element generates an infinite multiplicative semigroup without identity. It is proved that the reduced-over-idempotent property pass to polynomial rings, and we provide power series rings with a partial affirmative argument. It is also proved that every finitely generated subring of a locally finite reduced-over-idempotent ring is isomorphic to a finite direct product of copies of the prime field {0, 1}. A method to construct reduced-over-idempotent fields is also provided.