• Title/Summary/Keyword: semiconductor property

Search Result 337, Processing Time 0.024 seconds

Comparative Analysis on the Surface Property of SKD 61 Die-casting Steel Using Multilayer PVD Coating (다층 PVD 코팅을 이용한 SKD 61다이캐스팅 강의 표면 특성 비교 분석)

  • Kim, Seung Wook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.43-50
    • /
    • 2021
  • The properties of materials which are widely used in industry fields like automobile, shipbuilding, casting, and electronics are strongly needed to have higher surface hardness, lower surface roughness, and higher compressive residual stress. As mentioned above, for the purpose of satisfying three factors, a variety of researches with respect to surface improvement have been actively studied and applied to every industry. SKD61 which is mostly used for die casting process of cold chamber method must meet a countless number of problems which are thermal, mechanical and chemical from highly specific working environment at high temperature over 600℃. Above all, in case of plunger sleeves used for die casting process, thermal fatigue has a bad effect on the surface of an inlet where molten metal is repeatedly injected. On account of it, plunger sleeves cause manufacturers to deteriorate quality of products. Therefore, in this paper, to improve the surface of an inlet of plunger sleeve, multilayer PVD coating using Ti, Cr and Mo is suggested. Furthermore, The surface characteristics such as surface roughness(Rsa, Rsq), surface hardness(HRB, HRC) and residual stress using XRD(X-ray diffractometer) of coated samples and specimens are studied and discussed.

One-dimensional Schottky nanodiode based on telescoping polyprismanes

  • Sergeyev, Daulet
    • Advances in nano research
    • /
    • v.10 no.5
    • /
    • pp.471-479
    • /
    • 2021
  • In the framework of the density functional theory combined with the method of non-equilibrium Green functions (DFT + NEGF), the electric transport properties of a one-dimensional nanodevice consisting of telescoping polyprismanes with various types of electrical conductivity were studied. Its transmission spectra, density of state, current-voltage characteristic, and differential conductivity are determined. It was shown that C[14,17], C[14,11], C[14,16], C[14,10] show a metallic nature, and polyprismanes C[14,5], C[14,4] possess semiconductor properties and has a band gap of 0.4 eV and 0.6 eV, respectively. It was found that, when metal C[14,11], C[14,10] and semiconductor C[14,5], C[14,4] polyprismanes are coaxially connected, a Schottky barrier is formed and a weak diode effect is observed, i.e., manifested valve (rectifying) property of telescoping polyprismanes. The enhancement of this effect occurs in the nanodevices C[14,17] - C[14,11] - C[14,5] and C[14,16] - C[14,10] - C[14,4], which have the properties of nanodiode and back nanodiode, respectively. The simulation results can be useful in creating promising active one-dimensional elements of nanoelectronics.

Transmission/reflection phenomena of waves at the interface of two half-space mediums with nonlocal theory

  • Adnan, Jahangir;Abdul, Waheed;Ying, Guo
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.305-314
    • /
    • 2023
  • The article is about the theoretical analysis of the transmission and reflection of elastic waves through the interface of perfectly connected materials. The solid continuum mediums considered are piezoelectric semiconductors and transversely isotropic in nature. The connection among the mediums is considered in such a way that it holds the continuity property of field variables at the interface. The concept of strain and stress introduced by non-local theory is also being involved to make the study more applicable It is found that, the incident wave results in the generation of four reflected and three transmitted waves including the thermal and elastic waves. The thermal waves generated in the medium are encountered by using the concept of three phase lag heat model along with fractional ordered time thermoelasticity. The results obtained are calculated graphically for a ZnO material with piezoelectric semiconductor properties for medium M1 and CdSc material with transversely isotropic elastic properties for medium M2. The influence of fractional order parameter, non-local parameter, and steady carrier density parameter on the amplitude ratios of reflected and refraction waves are studied graphically by MATLAB.

Growth and characterization of BON thin films prepared by low frequency RF plasma enhanced MOCVD method

  • Chen, G.C.;Lim, D.-C.;Lee, S.-B.;Hong, B.Y.;Kim, Y.J.;Boo, J.-H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.510-515
    • /
    • 2001
  • It was first time that low frequency R.F. derived plasma enhanced MOCVD with frimethylborate precursor was used to fabricate a new ternary compound $BO_{x}$ $N_{y}$ . The formation of BON molecule was resulted from nitrogen nitrifying B-O, and forming the angular molecule structure proved by XPS and FT-IR results. The relationship between hardness and film thickness was studied. An thickness-independent hardness was fond about 10 GPa. The empirical calculation of band-gap and UV test result showed that our deposited $BO_{x}$ $N_{y}$ thin film was semiconductor material with 3.4eV of wide band gap. The electrical conductivity, $4.8$\times$10^{-2}$ /($\Omega$.cm)$^{-1}$ also confirmed that $BO_{x}$ $N_{y}$ has a semiconductor property. The roughness detected from the as-grown films showed that there was no serious bombarding effect due to anion in the plasma occurring in the RF frequency derived plasma.

  • PDF

Microstructure and Wear Property of $Al-5Mg-X(Si,Cu,Ti)/SiC_p$ Composites Fabricated by Pressureless Infiltration Method (무가압 침투법에 의해 제조된 $Al-5Mg-X(Si,Cu,Ti)/SiC_p$ 복합재료의 조직 및 마멸특성)

  • Woo, Kee-Do;Kim, Sug-Won;Ahn, Haeng-Keun;Jeong, Jin-Ho
    • Journal of Korea Foundry Society
    • /
    • v.20 no.4
    • /
    • pp.254-259
    • /
    • 2000
  • Metal matrix composites(MMCs) reinforced with hard particles have many potential application in aerospace structures, auto parts, semiconductor package, heat resistant panels, wear resistant materials and so on. In this work, the effect of SiC partioel sizes(50 and 100 ${\mu}m$) and additional elements such as Si, Cu and Ti on the microstructure and the wear property of $Al-5Mg-X(Si,Cu,Ti)/SiC_p$ composites produced by pressureless infiltration method have been investigated using optical microscopy, scanning eletron microcopy(SEM) with EDS(energy dispersive spectrometry), hardness test, X-ray diffractometer(XRD) and wear test. In present study, the sound $Al-5Mg-X(Si,Cu,Ti)/SiC_p$(50 and 100 ${\mu}m$) composites were fabricated by pressureless infiltration method. The $Al-5Mg-0.3Si-O.1Cu-O.1Ti/SiC_p$ composite with $50 {\mu}m$ size of SiC particle has higher hardness and better wear property than any other composite with $100{\mu}m$ size of SiC particle produced by pressureless infiltration method. The hardness and wear property of $Al-5Mg/SiC_p$(50 and 100 ${\mu}m$) composites were enhanced by the addition of Si, Cu and Ti in Al-5%Mg matrix alloy.

  • PDF

Multiferroic Property and Crystal Structural Transition of BiFeO3-SrTiO3 Ceramics

  • Kim, A-Young;Han, Seung-Ho;Kim, Jeong-Seog;Cheon, Chae-Il
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.4
    • /
    • pp.307-311
    • /
    • 2011
  • Solid solutions of the (1-x)$BiFeO_3-xSrTiO_3$ ceramic system (x = 0~0.4) are explored here in attempts to obtain multiferroic properties in these systems. The polarization-electric field hysteresis, magnetization-magnetic field curves, and dielectric properties are also characterized. This solid-solution system shows a crystal structural transition from a noncentrosymmetric (R3c) structure to a centrosymmetric (Pm-3m) structure at 0.3 < x < 0.4. The solid solution ceramic shows unsaturated M-H behavior and low remanent magnetization over the composition region of 0.1 ${\leq}$ x ${\leq}$ 0.3. The $0.7BiFeO_3-0.3SrTiO_3$ system shows the largest value of $M_s$ at 0.17 emu/g and the smallest value of $H_c$ at 1.06 kOe. The P-E hysteresis curves were not saturated under an electric field as high as E = 70 kV/cm. This system is considered to have multiferroic characteristics in the composition range of 0.1 ${\leq}$ x ${\leq}$ 0.3.

Characterization and Comparison of Doping Concentration in Field Ring Area for Commercial Vertical MOSFET on 8" Si Wafer (8인치 Si Power MOSFET Field Ring 영역의 도핑농도 변화에 따른 전기적 특성 비교에 관한 연구)

  • Kim, Gwon Je;Kang, Ye Hwan;Kwon, Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.4
    • /
    • pp.271-274
    • /
    • 2013
  • Power Metal Oxide Semiconductor Field Effect Transistor's (MOSFETs) are well known for superior switching speed, and they require very little gate drive power because of the insulated gate. In these respects, power MOSFETs approach the characteristics of an "ideal switch". The main drawback is on-resistance RDS(on) and its strong positive temperature coefficient. While this process has been driven by market place competition with operating parameters determined by products, manufacturing technology innovations that have not necessarily followed such a consistent path have enabled it. This treatise briefly examines metal oxide semiconductor (MOS) device characteristics and elucidates important future issues which semiconductor technologists face as they attempt to continue the rate of progress to the identified terminus of the technology shrink path in about 2020. We could find at the electrical property as variation p base dose. Ultimately, its ON state voltage drop was enhanced also shrink chip size. To obtain an optimized parameter and design, we have simulated over 500 V Field ring using 8 Field rings. Field ring width was $3{\mu}m$ and P base dose was $1e15cm^2$. Also the numerical multiple $2.52cm^2$ was obtained which indicates the doping limit of the original device. We have simulated diffusion condition was split from $1,150^{\circ}C$ to $1,200^{\circ}C$. And then $1,150^{\circ}C$ diffusion time was best condition for break down voltage.

Anisotropic Wet Etching of Single Crystal Silicon for Formation of Membrane Structure (멤브레인 구조 제작은 위한 단결정 실리콘의 이방성 습식 식각)

  • 조남인;강창민
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.4
    • /
    • pp.37-40
    • /
    • 2003
  • We have studied micro-machining technologies to fabricate parts and sensors used in the semiconductor equipment. The studies were based on the silicon integrated circuit processes, and composed of the anisotropic etching of single crystal silicon to fabricate a membrane structure for hot and cold junctions in the infrared absorber. KOH and TMAH were used as etching solutions for the anisotropic wet etching for membrane structure formation. The etching characteristic was observed for the each solution, and etching rate was measured depending upon the temperature and concentration of the etching solution. The different characteristics were observed according to pattern directions and etchant concentration. The pattern was made to incline $45^{\circ}$ on the primary flat, and optimum etching property was obtained in the case of 30 wt% and $90^{\circ}C$ of KOH etching solution for the formation of the membrane structure.

  • PDF

Assessment of Ni Catalyst Properties for Removal of O2 and CO Impurity in Inert Gas (불활성 가스의 O2와 CO 불순물 제거를 위한 Ni 촉매의 물성 평가)

  • Kim, Kwangbae;Jin, Saera;Kim, Eunseok;Lim, Yesol;Lee, Hyunjun;Kim, Seonghoon;Noh, Yunyoung;Song, Ohsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.588-595
    • /
    • 2020
  • This study examined the catalytic property of Ni-catalyst used in the gas purifying process to manufacture inert gases of N2 and Ar with high-purity over 9N for semiconductor industrial applications. Two types of Ni-catalysts with a cylindrical shape (C1) and churros shape structure (C2) were compared for the assessment. Optical microscopy and FESEM were used to analyze the shape and microstructure of the Ni-catalyst. EDS, XRD, and micro-Raman characterization were performed to examine the composition and properties. BET and Pulse Titration analyses were conducted to check the surface area and catalytic property of the Ni-catalyst. From the composition analysis results, C1 contained a relatively large amount of graphite as an impurity, and C2 contained higher Ni contents than C1. From specific surface area analysis, the specific surface area of C2 was approximately 1.69 times larger than that of C1. From catalytic property analysis, outstanding performance in O2 and CO impurity removal was observed at room temperature. Therefore, C2, having low-impurity and large specific surface area, is a suitable catalyst for the high-purity inert gas process in the semiconductor industry because of its outstanding performance in O2 and CO impurity removal at room temperature.

Vibration Analysis on the Inspection Equipment Frame of a Semiconductor Test Handler Picker (반도체 테스트 핸들러 픽커 검사장비 프레임에 대한 진동해석)

  • Kim, Young-Choon;Kim, Young-Jin;Kook, Jeong-Han;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4815-4820
    • /
    • 2014
  • As semiconductor chips are on a small scale, large content and high integratation, it is essential to develop the device of pick and place at the system of the semiconductor test handler to ensure its high precision and durability. In this study, inspection equipment frame model of a semiconductor test handler picker was investigated by vibration analysis with the property of the natural frequency and harmonic response. As 3 kinds of analysis case models, the device of pick and place was located at the left side (Case 1), the center (Case 2) and the right side (Case 3) of the upper guideline. The range of natural frequencies until the 6th order on this frame model ranges from 80Hz to 500Hz. As the analysis of the harmonic response when the frame is resonant, Case 2 showed the maximum equivalent stress of 52.802 MPa more than Cases 1 or 3. Case 2 was the most intensive among the three cases. Using the analysis result of this study, the design of the frame model, which can be applied to the safe working environment of the system is believed to be possible.