• Title/Summary/Keyword: semiconductor gas

Search Result 719, Processing Time 0.023 seconds

Wet Chemical Process for Improving Air Quality in Semiconductor Manufacturing Process (반도체 생산공정의 대기질 개선을 위한 복합 대기오염물의 습식화학 제거공정)

  • Jun, Chang-Sung;Kim, Hak-Ju;Park, Young-Moo;Lee, Dae-Won;Ham, Dong-Suk;Jeon, Sang-Moon;Lee, Kwan-Young
    • Clean Technology
    • /
    • v.13 no.2
    • /
    • pp.109-114
    • /
    • 2007
  • In this study, we performed basic researches to develop wet purification system for improving air qualities of ventilation in semiconductor manufacturing process. Using 0.5 M aqueous solution of $KMnO_4$, 50 ppm of $NH_3$, SOx and NOx were reduced to 99% successfully. However, the removal of $O_3$ was limited to $22{\sim}30%$ for all the tested chemical solutionsincluding $KMnO_4$. Therefore, adoption of a dry ozone filter is necessary to reduce $O_3$ below a satisfactory level. For all the chemical solutions tested, NOx removal efficiency increased as NOx was mixed with $O_3$. As chemical solution was sprayed using water spraying system equipped with air atomizing type nozzle, the removal efficiencies of gaseous pollutants increased due to the increase of gas-liquid interfacial area.

  • PDF

A Study on the Performance Analysis of AIoT High-Efficiency Streetlamp for Carbon Emissions (탄소배출권용 AIoT 고효율 가로등 성능분석 연구)

  • Seung-Ho Park;Seong-Uk Shin;Kyung-Sunl Yoo
    • Journal of Advanced Technology Convergence
    • /
    • v.2 no.4
    • /
    • pp.13-19
    • /
    • 2023
  • Following the signing of the Paris Agreement on Climate Change (UNFCCC, 2015), the world is expanding greenhouse gas reduction activities through comprehensive participation that includes not only developed countries but also developing countries. Major countries around the world are placing high expectations on the effectiveness of total carbon emissions regulation through the carbon emissions market. However, in order to obtain carbon credits, third-party verification is required based on quantitative carbon reduction data. Accordingly, in this paper, we developed an AIoT high-efficiency street light for carbon emissions and conducted a performance analysis study to measure the luminous efficiency of the lighting fixture. To obtain carbon emissions rights, we used high-efficiency LED PKG, developed our own high-voltage PFC, and developed high-efficiency lighting fixtures capable of communication. For communication, the 2.4GHz LoRa method was adopted between the lighting fixture and the gateway. Lens design was conducted through simulation of Korea Expressway Corporation's standard streetlight types A, B, and C. The performance of the streetlight was verified as being more efficient than other existing products through the measurement of luminous efficiency by an accredited rating agency, and it is expected that carbon emissions rights will be obtained by reducing electrical energy through this.

Highly Efficient Thermal Plasma Scrubber Technology for the Treatment of Perfluorocompounds (PFCs) (과불화합물(PFCs) 가스 처리를 위한 고효율 열플라즈마 스크러버 기술 개발 동향)

  • Park, Hyun-Woo;Cha, Woo Byoung;Uhm, Sunghyun
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.10-17
    • /
    • 2018
  • POU (point of use) scrubbers were applied for the treatment of waste gases including PFCs (perfluorocompounds) exhausted from the CVD (chemical vapor deposition), etching, and cleaning processes of semiconductor and display manufacturing plant. The GWP (global warming potential) and atmosphere lifetime of PFCs are known to be a few thousands higher than that of $CO_2$, and extremely high temperature more than 3,000 K is required to thermally decompose PFCs. Therefore, POU gas scrubbers based on the thermal plasma technology were developed for the effective control of PFCs and industrial application of the technology. The thermal plasma technology encompasses the generation of powerful plasma via the optimization of the plasma torch, a highly stable power supply, and the matching technique between two components. In addition, the effective mixture of the high temperature plasma and waste gases was also necessary for the highly efficient abatement of PFCs. The purpose of this paper was to provide not only a useful technical information of the post-treatment process for the waste gas scrubbing but also a short perspective on R&D of POU plasma gas scrubbers.

Electrical properties of n-type $WO_{3}$ based gas sensors (N-형 $WO_{3}$계 가스센서의 전기적 특성)

  • Yang, Jong-In;Kim, Il-Jin;Lim, Han-Jo;Han, Sang-Do;Chung, Kwan-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.188-196
    • /
    • 1998
  • The sensing and electrical characteristics of $WO_{3}$-based n-type semiconductor gas sensors are investigated. In normal air condition, $TiO_{2}$(4 wt. %)-doped $WO_{3}$-based sensor fabricated without any binder shows the grain boundary ( GB ) potential barrier height of 0.26 V. Sensors fabricated with alumina, PVA and silica sol binders show 0.17, 0.22 and 0.26 V of GB potential barrier height, respectively. In the ambience of 120 ppm $NO_{x}$ concentration, the GB potential barrier height of the sensor fablicated without binder is increased to 0.59 V. The sensors were fabricated with alumina, PVA, silica sol binders show 0.43, 0.66 and 0.52 V of potential barrier, respectively. Thus the variation of the potential barrier at GB is largest in the sensor fabricated with the PVA binder. This is found to be the main reason why the sensor fabricated with the PVA binder shows the best sensitivity. It is also found that the decrease of sensitivity at a temperature higher than the optimum operation temperature is due to the temperature dependence of the sensor resistance in normal air condition rather than the desorption of the adsorbed $NO_{x}$ gas particles. In the ambience of 250 ppm CO concentration, the GB potential barrier heights of the sensors fabricated without binder and with PVA binder are about 0.2 V showing negligible change compared to the case of normal air ambience. This fact indicates that these sensors are good candidates for the selective detection of $NO_{x}$ gas in the mixture of CO and $NO_{x}$ gases.

  • PDF

The Development of Scrubber for F-gas Reduction from Electronic Industry Using Pressure Swing Adsorption Method and Porous Media Combustion Method (압력순환흡착법과 다공성 매체 연소법을 이용한 전자산업 불화가스 저감 스크러버 개발)

  • Chung, Jong Kook;Lee, Ki Yong;Lee, Sang Gon;Lee, Eun Mi;Mo, Sun Hee;Lee, Dae Keun;Kim, Seung Gon
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.181-187
    • /
    • 2017
  • The perfluorocompounds (PFCs) emitted from the semiconductor and display manufacture is treated by abatement systems which use various technologies, such as combustion, thermal, plasma, catalyst. However, it is required that the system should overcome their drawbacks with excess energy consumption and low removal efficiency. The new technology using combination of pressure swing adsorption and excess enthalpy combustion for the reduction of PFCs emissions were developed and analyzed its characteristics. PFCs concentration ratio and PFCs loss factor were calculated from measuring concentration of PFCs at the calculated by comparing concentration of PFCs at the combustor's inlet and outlet. There were performance evaluations with various gas flow for comparing energy consumption and removal efficiency with existing equipments. The concentration ratio and the loss factor of PFCs were 1.65, 8.2%, respectively, when the total gas flow of the pressure swing absorption (PSA) inlet was 204 liter per minute (LPM) and $CF_4$ concentration was 1412 ppm. In comparison with existing system at constant condition, $CF_4$ removal efficiency for a porous media combustion (PMC) showed the improvement more than 16% and the consumed energy was also reduced up to approximately 41%. Then, the total gas flow introduced into PMC and $CF_4$ concentration were 91-LPM and 2335 ppm, respectively, and the destruction and removal efficiency of $CF_4$ was about 96% at 19-LPM $CH_4$, and 40-LPM $O_2$.

Calibration of Discharge Coefficient of Sonic Nozzle Using CVFM (정적형 유량계를 이용한 소닉노즐 유출계수 교정 방법에 관한 연구)

  • Shin, J.H.;Kang, S.B.;Park, K.A.;Lim, J.Y.;Cheung, W.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.243-248
    • /
    • 2010
  • Sonic nozzles have been a standard device for measurement of steady state gas flow, as recommended in ISO 9300. This paper introduces two sonic nozzles of diameter ${\Phi}$ 0.03 mm and ${\Phi}$ 0.2 mm precisely machined according to ISO 9300. The constant volume flow meter(CVFM), readily set up in the Vacuum center of KRISS. was used to calibrate the discharge coefficients of both nozzles. The calibration results were shown to determine them within the 3% expanded measurement uncertainty. Calibrated sonic nozzles were found to be applicable for precision measurement of steady state gas flow in the vacuum process in the ranges of 0.6~1,800 cc/min. Those flow conditions are equivalent to the fine gas flow with Reynolds numbers of 26~12,100. Those encouraging results confirm that calibrated sonic nozzles enable precision measurement of extremely low gas flow encountered very often in th vacuum processes. Both calibrated sonic nozzles are proven to provide the precision measurement of the volume flow rate of the dry vacuum pump within one percent difference in reference to CVFM. Calibrated sonic nozzles are applied to a new 'in-situ and in-field' equipment designed to measure the volume flow rate of vacuum pumps in the semiconductor and flat display processes. Furthermore, they can provide other applications to flow control devices in vacuum, such as MFC, etc.

Quantitative Risk Analysis of a Pervaporation Process for Concentrating Hydrogen Peroxide (과산화수소 농축을 위한 투과증발공정의 정량적 위험성 분석)

  • Jung, Ho Jin;Yoon, Ik Keun;Choi, Soo Hyoung
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.750-754
    • /
    • 2014
  • Quantitative risk analysis has been performed for a pervaporation process for production of high test peroxide. Potential main accidents are explosion and fire caused by a decomposition reaction. As the target process has a laboratory scale, the consequence is considered to belong to Category 3. An event tree has been developed as a model for occurrence of a decomposition reaction in the target process. The probability functions of the accident causes have been established based on the frequency data of similar events. Using the constructed model, the failure rate has been calculated. The result indicates that additional safety devices are required in order to achieve an acceptable risk level, i.e. an accident frequency less than $10^{-4}/yr$. Therefore, a layer of protection analysis has been applied. As a result, it is suggested to introduce inherently safer design to avoid catalytic reaction, a safety instrumented function to prevent overheating, and a relief system that prevents explosion even if a decomposition reaction occurs. The proposed method is expected to contribute to developing safety management systems for various chemical processes including concentration of hydrogen peroxide.

Effects of Crystallite Size on Gas Sensitivity and Surface Property of Oxide Semiconductor (산화물 반도체의 결정입도가 가스감도와 표면특성에 미치는 영향)

  • Song, Guk-Hyeon;Park, Sun-Ja
    • Korean Journal of Materials Research
    • /
    • v.3 no.4
    • /
    • pp.319-326
    • /
    • 1993
  • The effects of $SnO_2$ crystallite size on the powder characteristics, the resistance in air and the sensitivity to 0.5 vol % $H_2$, CO-air mixture were observed. The size of SnO, powder was controlled by calcining temperature variation ($500^{\circ}C$ ~$1100^{\circ}C$) of $\alpha$-stannic acid fabricated from $SnCl_4 \cdot xH_2O$. Its crystallite size. evaluated from TEM image, was in the range of 8-54nm. With the reduction of crystallite size, the adsoption peak of $H_2O$ on FTIR curve became more clear while the lattice parameters were invariable. As the crystallite size decreased, with elements of thick film, the temperatures showing a minimum resistance in air and a maximum sensitivity to H, gas reduced. The temperature variations were assigned to the changes of activation energy of the active adsorbates, and it was suggested that the decrease of activation energy can be one of the reasons for the' sensitivity increase with the' fine powder.

  • PDF

Separation and Recovery of F-gases (불화 온실 가스 저감 및 분리회수 기술의 연구개발 동향)

  • Nam, Seung-Eun;Park, Ahrumi;Park, You-In
    • Membrane Journal
    • /
    • v.23 no.3
    • /
    • pp.189-203
    • /
    • 2013
  • F-gases, gases containing fluorine such as perfluorocarbons (PFCs), sulfurhexafluoride ($SF_6$), nitrogen trifluoride ($NF_3$) are known to have green house effects. Although the net emission rates of gases containing fluorine are much lower than those of $CO_2$, their contribution to global warming cannot be ignored because of their extremely high global warming potential (GWP). F-gases mainly have been used for a variaty of applications in the semiconductor/LCD processes and in the electric power distribution industry of the national key industry. One of practical solutions of controlling the emission rates of F-gases is to reuse by separation and recovery of F-gases of low concentration from the gases mixtures with nitrogen or air. This work investigates some methods for F-gases recovery and separation around the membrane-based process.

The advancing techniques and sputtering effects of oxide films fabricated by Stationary Plasma Thruster (SPT) with Ar and $O_2$ gases

  • Jung Cho;Yury Ermakov;Yoon, Ki-Hyun;Koh, Seok-Keun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.216-216
    • /
    • 1999
  • The usage of a stationary plasma thruster (SPT) ion source, invented previously for space application in Russia, in experiments with surface modifications and film deposition systems is reported here. Plasma in the SPT is formed and accelerated in electric discharge taking place in the crossed axial electric and radial magnetic fields. Brief description of the construction of specific model of SPT used in the experiments is presented. With gas flow rate 39ml/min, ion current distributions at several distances from the source are obtained. These was equal to 1~3 mA/$\textrm{cm}^2$ within an ion beam ejection angle of $\pm$20$^{\circ}$with discharge voltage 160V for Ar as a working gas. Such an extremely high ion current density allows us to obtain the Ti metal films with deposition rate of $\AA$/sec by sputtering of Ti target. It is shown a possibility of using of reactive gases in SPT (O2 and N2) along with high purity inert gases used for cathode to prevent the latter contamination. It is shown the SPT can be operated at the discharge and accelerating boltages up to 600V. The results of presented experiments show high promises of the SPT in sputtering and surface modification systems for deposition of oxide thin films on Si or polymer substrates for semiconductor devices, optical coatings and metal corrosion barrier layers. Also, we have been tried to establish in application of the modeling expertise gained in electric and ionic propulsion to permit numerical simulation of additional processing systems. In this mechanism, it will be compared with conventional DC sputtering for film microstructure, chemical composition and crystallographic considerations.

  • PDF