• 제목/요약/키워드: semi-solid forging

검색결과 56건 처리시간 0.027초

반용융 알루미늄재료의 단조공정조건이 기계적 성질에 미치는 영향 (The effect of forging process conditions of semi-solid aluminum material on mechanical properties)

  • 강충길;강동우
    • 대한기계학회논문집A
    • /
    • 제21권9호
    • /
    • pp.1400-1413
    • /
    • 1997
  • Semi-solid forging(SSF) process of A356 aluminium alloy has been studied to assess the effect of process variables on the component integrity. Semi-solid material(SSM) was fabricated by mechanical and electro-magnetic stirring process. The fabricated SSM by using mechanical stirring process has been carried out on cooling rate of 0.022.deg. C/sec 0.0094.deg. C/sec and stirring speed n=600, 1000 rpm, respectively. The fabricated SSM by using electro-magnetic stirring process is supplied by Pechiney. The holding time and temperature in the semi-solid state before forging also affects the globular microstructure of alloy. Therefore, the influence of these two parameters is discussed in terms of the microstructure of alloy. The SSF process has been conducted with three different die temperatures($T_{die}$=250.deg. C, 300.deg. C, 350.deg. C) and two kinds of gate types(straight gate and orifice gate). This paper is to investigate the influence of gate shapes of die on filling phenomena in SSF process more deeply. The mechanical properties of forged components were also investigated for variation of process conditions such as die temperature, gate shape and SSM.

반용융 복합압출 제품의 성형실험 및 유한요소해석 (Finite Element Analysis and Experiment of Combined Extrusion in Semi-Solid State)

  • 최재찬;박준홍;김병민
    • 소성∙가공
    • /
    • 제8권3호
    • /
    • pp.313-318
    • /
    • 1999
  • Many products related to automobile and airplane industry have been manufactured by semi-solid forging. In this paper finite element analysis of product by combined extrusion in semi-solid state was performed and its experimental verification using A356 was conducted. distribution of solid fraction was analyzed and compared with the experimental microstructure in the product. In addition, distribution of temperature in the product was analysed by finite element method.

  • PDF

반용융 알루미늄 재료의 압축성형시 변형율속도가 미시적 거동에 미치는 영향 (The Effect of Strain Rate on Macroscopic Behaviour in Compression Forming of Semi-Solid Aluminum Alloy)

  • 강충길;김기훈
    • 소성∙가공
    • /
    • 제6권4호
    • /
    • pp.338-345
    • /
    • 1997
  • The behaviour of alloys in the semi-solid state strongly depends on the imposed stress stage and on the morphology of the phase which can vary from dendritic to globular. To optimal net shape forging of semi-solid materials, it is important to investigate for material behaviour for variation of strain rate. Therefore, to investigate the effect of compression speed on deformation of aluminum alloy with globular microstructure, the compression test for semi-solid aluminum alloy with controlled solid fraction is perform by material test system which is attracted with furance. The behavior of semi-solid aluminum alloy were discussed for the various solid fraction and die speed. The material constants in stress-strain were are also proposed.

  • PDF

반용융재료의 제조 및 부품성형공정 (Fabrication of Semi-solid Materials and Components forming Processes)

  • 강충길
    • 소성∙가공
    • /
    • 제3권1호
    • /
    • pp.3-17
    • /
    • 1994
  • The semi-solid metal forming for vigorously agitated semi-solid alloys has been widely studied over the last decade. Metal forming processes are now being developed using alloys in the semi-solid state, among them are rolling, forging, extrusion, and die casting. Some of these are now employed commercially to produce a components and are also used to fabricate metal matrix composites. The semi-solid materials can be processed either directly during solidification and for this purpose mechanical stirring was demonstrated to produce a highly solidification. This paper is concerned with the influence of processing parameters on limitations of semi-solid forming.

  • PDF

응고현상을 고려한 반용융 알루미늄재료의 단조공정에 관한 충전해석 (A Filling Analysis on Forging Process of Semi-Solid Aluminum Materials Considering Solidification Phenomena)

  • 강충길;최진석;강동우
    • 소성∙가공
    • /
    • 제5권3호
    • /
    • pp.239-255
    • /
    • 1996
  • A new forming technology has been developed to fabricate near-net shape products using light metal. A semi-solid forming technology has some advantages compared with the conventional forming processes such as die casting squeeze casting and hot/cold forging. In this study the numerical analysis of semi-solid filling for a straight die shape and orifice die shape in gate pattern is studied on semi-solid materials(SSM) of solid fraction fs =30% in A356 aluminum alloy. The finite difference program of Navier-Stokes equation coupled with heat transfer and solidification has been developed to predict a filling pattern and the temperature distribution of SSM. The programdeveloped in this study gives die filling patterns of SSM and final solidifica-tion region.

  • PDF

반용융 단조에서 가압 단계가 제품에 미치는 영향 (The Influence of Compression Step on Products for Semi-Solid Forging)

  • 최재찬;박형진;이병목
    • 소성∙가공
    • /
    • 제7권2호
    • /
    • pp.139-149
    • /
    • 1998
  • The technology of Semi-Solid Forging(SSF) has been actively developed to fabricate near net shape products using light and hardly formable materials. Generally the SSF process is composed of slug is compressed during a certain holding time in order to completely fill the die cavity and accelerate the solidification rate. The decision of compression time is important since it can affect microstructural characteristics, mechanical properties and shape of products.. In order to determine it proper overall heat transfer coefficient between the slug and dies should be investigated. This paper presents the procedure to find the overall heat transfer coefficient between the slug and dies by nonlinear optimization of temperature and solid fraction for a cylindrical slug at compression step in closed-die semi-solid forging. In finite ele-ment heat transfer analysis release of latent heat during solidification was considered. The influence of the predicted compression time on miscrostructural characteristics mechanimcal properties and shape of products is finally investigated by experiment.

  • PDF

나선형 기계 교반 레오로지 소재의 이용한 Thixoforging 공정 (Thixoforging Process of Rheology Materials fabricated by Spiral Mechanical Stirring)

  • 한수훈;정일갑;배정운;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.131-134
    • /
    • 2007
  • A semi-solid forming technology has a lot of advantages compared to the die casting, squeeze casting and hot/cold forging, so semi-solid forming has been studied actively. Semi-solid forming has two methods. One is thixoforming with reheating of prepared billet, the other is rheoforming with cooled melt until semi-solid state. Thixoforging technology can produce non-dendritic alloys for semi-solid forming complex shaped parts in metal alloys. In this study, the thixoforging was experimented with made rheology materials by the spiral stirrer equipment. Rheology materials for forging were made by A356 casting aluminum alloy and A6061 wrought aluminum alloy. After experiment, forged samples were measured microstructure and were heat treated for high mechanical properties.

  • PDF

반용융 성형공정의 응용 및 문제점 (Applications of Semi-Solid Forming and its Problems)

  • 강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 고액공존금속의 성형기술 심포지엄
    • /
    • pp.135-147
    • /
    • 1997
  • The production of light metal parts using aluminum is mainly performed by die casting and squeeze casting, which directly fabricate the required shape from the liquid state. However, die casting is subject to defects such as shrinkage porosity and air trapped when molten metal enters the cavity, whilst squeeze casting also has defects due to turbulent flow in the die cavity. Both diecasting and sqeeze casting have inhomogeneous mechanical property in terms of dendritic structure during solidification. Active research has been carried out on semi-solid processing, rather than on conventional process methods such as die casting, which involve various problems. Therefore in this paper, to introduce the fundamental technology for d e design, in die casting and forging process with semi-solid materials, relationship between stress and strain of semi-solid materials, and for producing parts die design has been proposed as parameters of globulization of the microstructure and gate shape. The prevention of various defects to produce sound parts are also introduced.

  • PDF

반용융 단조에서 응고 현상을 고려한 가압유지 단계의 유한요소해석 (Finite Element Analysis of Compression Holding Step Considering Solidification for Semi-Solid Forging)

  • 최재찬;박형진;조해용
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.597-601
    • /
    • 1997
  • The technology of Semi-Solid Forging(SSF) has been actively developed to fabricate near-net shape products using light and hardly formable materials. Generally, the SSF process is composed of slug heating,forming,compression holding and ejecting step. After forming step in SSF, the slug is comperssed during a certain holding time in order to be completely filled in the die cavity and be accelerated in solidification rate. This paper presents the analysis of temperature,solid fraction and shrinkage at compression holding step for a cylindrical slug,then predicts the solidification time to obtain the final shaped part. Enthalpy-based finite element analysis is performed to solve the heat transfer problem considering phase change in solidification.

  • PDF

반용융 단조에서 응고 현상을 고려한 가압유지 단계의 유한요소해석 (Finite Element Analysis of Compression Holding step Considering Solidification for Semi-Solid Forging)

  • Park, J.C.;Park, H.J.;Cho, H.Y.
    • 한국정밀공학회지
    • /
    • 제14권10호
    • /
    • pp.102-108
    • /
    • 1997
  • The technology of Semi-Solid Forging (SSF) has been actively developed to fabricate near-net- shape products using light and hardly formable materials. Generally, the SSF process is composed of slug heating, forming, compression holding and ejecting step. After forming step in SSF, the slug is compressed during a certain holding time in order to be completely filled in the die cavity and be accelerated in solidification rate. This paper presents the analysis of temperature, solid fraction and shrinkage at compression holding step for a cylindrical slug, then predicts the solidification time to obtain the final shaped part. Enthalpy-based finite element analysis is performed to solve the heat transfer problem considering phase change in solidification.

  • PDF