• Title/Summary/Keyword: semi-invariant minimal submanifold

Search Result 2, Processing Time 0.016 seconds

SEMI-INVARIANT MINIMAL SUBMANIFOLDS OF CONDIMENSION 3 IN A COMPLEX SPACE FORM

  • Lee, Seong-Cheol;Han, Seung-Gook;Ki, U-Hang
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.4
    • /
    • pp.649-668
    • /
    • 2000
  • In this paper we prove the following : Let M be a real (2n-1)-dimensional compact minimal semi-invariant submanifold in a complex projective space P(sub)n+1C. If the scalar curvature $\geq$2(n-1)(2n+1), then m is a homogeneous type $A_1$ or $A_2$. Next suppose that the third fundamental form n satisfies dn = 2$\theta\omega$ for a certain scalar $\theta$$\neq$c/2 and $\theta$$\neq$c/4 (4n-1)/(2n-1), where $\omega$(X,Y) = g(X,øY) for any vectors X and Y on a semi-invariant submanifold of codimension 3 in a complex space form M(sub)n+1 (c). Then we prove that M has constant principal curvatures corresponding the shape operator in the direction of the distingusihed normal and the structure vector ξ is an eigenvector of A if and only if M is locally congruent to a homogeneous minimal real hypersurface of M(sub)n (c).

  • PDF

CERTAIN RESULTS ON SUBMANIFOLDS OF GENERALIZED SASAKIAN SPACE-FORMS

  • Yadav, Sunil Kumar;Chaubey, Sudhakar K
    • Honam Mathematical Journal
    • /
    • v.42 no.1
    • /
    • pp.123-137
    • /
    • 2020
  • The object of the present paper is to study certain geometrical properties of the submanifolds of generalized Sasakian space-forms. We deduce some results related to the invariant and anti-invariant slant submanifolds of the generalized Sasakian spaceforms. Finally, we study the properties of the sectional curvature, totally geodesic and umbilical submanifolds of the generalized Sasakian space-forms. To prove the existence of almost semiinvariant and anti-invariant submanifolds, we provide the non-trivial examples.