• 제목/요약/키워드: semi-homomorphism

검색결과 9건 처리시간 0.023초

SEMI-HOMOMORPHISMS OF BCK-ALGEBRAS

  • Lee, Kyoung Ja;Jun, Young Bae
    • 충청수학회지
    • /
    • 제22권2호
    • /
    • pp.131-139
    • /
    • 2009
  • As a generalization of a homomorphism of BCK-algebras, the notion of a semi-homomorphism of BCK-algebras is introduced, and its characterization is given. A condition for a semi-homomorphism to be a homomorphism is provided.

  • PDF

CONTINUITY OF JORDAN *-HOMOMORPHISMS OF BANACH *-ALGEBRAS

  • Draghia, Dumitru D.
    • 대한수학회보
    • /
    • 제30권2호
    • /
    • pp.187-191
    • /
    • 1993
  • In this note we prove the following result: Let A be a complex Banach *-algebra with continuous involution and let B be an $A^{*}$-algebra./T(A) = B. Then T is continuous (Theorem 2). From above theorem some others results of special interest and some well-known results follow. (Corollaries 3,4,5,6 and 7). We close this note with some generalizations and some remarks (Theorems 8.9.10 and question). Throughout this note we consider only complex algebras. Let A and B be complex algebras. A linear mapping T from A into B is called jordan homomorphism if T( $x^{1}$) = (Tx)$^{2}$ for all x in A. A linear mapping T : A .rarw. B is called spectrally-contractive mapping if .rho.(Tx).leq..rho.(x) for all x in A, where .rho.(x) denotes spectral radius of element x. Any homomorphism algebra is a spectrally-contractive mapping. If A and B are *-algebras, then a homomorphism T : A.rarw.B is called *-homomorphism if (Th)$^{*}$=Th for all self-adjoint element h in A. Recall that a Banach *-algebras is a complex Banach algebra with an involution *. An $A^{*}$-algebra A is a Banach *-algebra having anauxiliary norm vertical bar . vertical bar which satisfies $B^{*}$-condition vertical bar $x^{*}$x vertical bar = vertical bar x vertical ba $r^{2}$(x in A). A Banach *-algebra whose norm is an algebra $B^{*}$-norm is called $B^{*}$-algebra. The *-semi-simple Banach *-algebras and the semi-simple hermitian Banach *-algebras are $A^{*}$-algebras. Also, $A^{*}$-algebras include $B^{*}$-algebras ( $C^{*}$-algebras). Recall that a semi-prime algebra is an algebra without nilpotents two-sided ideals non-zero. The class of semi-prime algebras includes the class of semi-prime algebras and the class of prime algebras. For all concepts and basic facts about Banach algebras we refer to [2] and [8].].er to [2] and [8].].

  • PDF

CONTINUITY OF HOMOMORPHISMS AND DERIVATIONS ON BANACH ALGEBRAS

  • Park, Sung-Wook
    • 대한수학회보
    • /
    • 제30권1호
    • /
    • pp.109-115
    • /
    • 1993
  • In 1940 Eidelheit showed that every homomorphism of a Banach algebra onto the Banach algebra B(X) of all bounded linear operators on a Banach space X is continuous. At about the same time, Gelfand proved that every homomorphism of a commutative Banach algebra into a commutative semi-simple Banach algebra is continuous. In [7] Johnson proved that every homomorphism of a Banach algebra onto non-commutative semi-simple Banach algebra is continuous, and this is still the most important result of this type. In this paper we are concerned with continuity of derivations on commutative Banach algebras and of homomorphisms into commutative Banach algebras. Throughout this paper we suppose that A is a commutative Banach algebra. R will denote the redical of A.

  • PDF

CONTINUITY OF HOMOMORPHISMS BETWEEN BANACH ALGEBRAS

  • Cho, Tae-Geun
    • 대한수학회보
    • /
    • 제20권2호
    • /
    • pp.71-74
    • /
    • 1983
  • The problems of the continuity of homomorphisms between Banach algebras have been studied widely for the last two decades to obtain various fruitful results, yet it is far from characterizing the calss of Banach algebras for which each homomorphism from a member of the class into a Banach algebra is conitnuous. For commutative Banach algebras A and B a simple proof shows that every homomorphism .theta. from A into B is continuous provided that B is semi-simple, however, with a non semi-simple Banach algebra B examples of discontinuous homomorphisms from C(K) into B have been constructed by Dales [6] and Esterle [7]. For non commutative Banach algebras the problems of automatic continuity of homomorphisms seem to be much more difficult. Many positive results and open questions related to this subject may be found in [1], [3], [5] and [8], in particular most recent development can be found in the Lecture Note which contains [1]. It is well-known that a$^{*}$-isomorphism from a $C^{*}$-algebra into another $C^{*}$-algebra is an isometry, and an isomorphism of a Banach algebra into a $C^{*}$-algebra with self-adjoint range is continuous. But a$^{*}$-isomorphism from a $C^{*}$-algebra into an involutive Banach algebra is norm increasing [9], and one can not expect each of such isomorphisms to be continuous. In this note we discuss an isomorphism from a commutative $C^{*}$-algebra into a commutative Banach algebra with dense range via separating space. It is shown that such an isomorphism .theta. : A.rarw.B is conitnuous and maps A onto B is B is semi-simple, discontinuous if B is not semi-simple.

  • PDF

ABSTRACT RELATIVE FOURIER TRANSFORMS OVER CANONICAL HOMOGENEOUS SPACES OF SEMI-DIRECT PRODUCT GROUPS WITH ABELIAN NORMAL FACTOR

  • Farashahi, Arash Ghaani
    • 대한수학회지
    • /
    • 제54권1호
    • /
    • pp.117-139
    • /
    • 2017
  • This paper presents a systematic study for theoretical aspects of a unified approach to the abstract relative Fourier transforms over canonical homogeneous spaces of semi-direct product groups with Abelian normal factor. Let H be a locally compact group, K be a locally compact Abelian (LCA) group, and ${\theta}:H{\rightarrow}Aut(K)$ be a continuous homomorphism. Let $G_{\theta}=H{\ltimes}_{\theta}K$ be the semi-direct product of H and K with respect to ${\theta}$ and $G_{\theta}/H$ be the canonical homogeneous space (left coset space) of $G_{\theta}$. We introduce the notions of relative dual homogeneous space and also abstract relative Fourier transform over $G_{\theta}/H$. Then we study theoretical properties of this approach.

ON STRONGLY CONNECTED MODULES WITH PERFECT

  • PARK CHIN HONG;LEE JEONG KEUN;SHIM HONG TAE
    • Journal of applied mathematics & informatics
    • /
    • 제17권1_2_3호
    • /
    • pp.653-662
    • /
    • 2005
  • In this paper we shall give the relationships among $T_R,\;End_{R}(M),\;SEnd_{R}(M)\;and\;SAut_R(M)$ when M is a perfect R-module. If M and N are perfect modules, we get $SAut_{R}(M {\times}N){\cong}SAut_{R}(M){\times}SAut_R(N)$. Also we shall discuss that $_x(M)_H$ is a subgroup of $_x(M)$ if M is quasi-perfect and $_x(M)_H$ is a normal subgroup of $_x(M)$ if M is perfect.

연역 객체 지향 데이터베이스 언어 구현을 통한 XML 데이터 처리에 관한 연구 (On XML Data Processing through Implementing A Deductive and Object-oriented Database Language)

  • 김성규
    • 정보처리학회논문지D
    • /
    • 제9D권6호
    • /
    • pp.991-998
    • /
    • 2002
  • 본 논문에서는 XML 데이터와 같은 비구조적인 데이터 처리와 추론을 필요로 하는 의미 웹(semantic web) 구축에 유리한 연역 객체 지향 데이터베이스(Deductive and Object-oriented Database) 언어구현을 통해 XML 데이터 처리에 대해 알아본다. 대량 문서 관리와 데이터 교환에 가장 유용한 마크업 언어로 알려진 XML을 이용하여 XML 데이터 모델을 연역객체지향 데이터베이스 모델로 바꾸는 방법에 대해 알아본 다음 이 연역객체 지향 데이터베이스를 다시 Connection Graph로 바꾸고 Connection Graph Resolution을 이용하여 어떻게 질의에 답할 수 있는지를 기술한다. 또한 데이터베이스 내의 계층 지식을 이용하여 효율적이면서도 같은 답을 주는 질의로 바꾸는 방법을 제시하고 이 방법이 효율적이며 논리적으로 타당하다는 점을 증명한다.

추론한 데이타 타입을 이용한 질의 가능 XML 압축 (A Queriable XML Compression using Inferred Data Types)

  • 박명제;민준기;정진완
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제32권4호
    • /
    • pp.441-451
    • /
    • 2005
  • HTML은 데이타베이스와 같은 특수한 형태의 저장소 대신, 전형적인 파일 시스템에 저장되는 경우가 대부분이다. 이와 마찬가지로, 최근 인터넷 상에서의 데이타 교환 및 표현의 표준으로 부각되는 XML 역시 파일 시스템을 통하여 저장되는 경우가 현저하다. 하지만, XML 문서가 지니는 비정규적인 구조와 장황성 때문에, 디스크 공간이나 네트워크 상의 대역폭의 사용이 정규적인 구조를 지니는 데이터에 비해 크다. 이러한 XML 문서의 비효율성을 해결하고자, XML 문서의 압축에 관한 연구가 진행되었다. 최근에 연구된 XML 압축 기법들을 살펴보면, 압축된 XML 문서에 대한 질의를 전혀 지원하지 않거나, 질의를 지원하더라도 XML 문서 내의 데이타 값들의 특성을 고려하지 않고 단순히 기존의 압축 방법들을 적용하기 때문에 영역 질의를 지원하기 위해서는 압축의 일부를 복원해야 한다. 그 결과, 압축된 XML 문서에 대한 질의 성능이 저하되었다. 따라서, 본 연구에서는 압축된 XML 문서에 직접적이고 효율적인 질의를 지원하는 XML 압축 기법을 제안하고자 한다. XML 문서의 각 태그를 사전 압축 방법을 사용하여 압축하고자 하며, 태그 별로 데이타들의 타입을 추론하여 추론된 타입에 적절한 압축 방법을 사용하여 데이타 값들을 압축하고자 한다. 또한, 제안하는 압축 기법의 구현 및 성능 평가를 통하여, 구현한 XML 압축기가 실생활에 사용되는 XML 문서들을 효율적으로 압축하며 압축된 XML 문서에 대해 향상된 질의 성능을 제공하는 것을 보인다.