• Title/Summary/Keyword: semi-batch process

Search Result 44, Processing Time 0.039 seconds

Pancreas로부터 의약품 원료생산을 위한 초임계 추출

  • Gwon, Hyeok-Su;Jeon, Byeong-Su;Lee, Baek-Cheon;An, Byeong-Geun
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.516-519
    • /
    • 2000
  • Generally pancreas consist of lipid, water and protein, digestion enzyme complex (pro-tease, lipase, amylase). The sample used in this work was frozen dry and treated by a semi-batch flow type. In order to develop a supercritical fluid extraction process to rem-ove lipid from the pancreas, experiments were conducted at various operating conditions(pressure range $1500{\sim}2800psi$, temperature range $25{\sim}40^{cdot}C$, particle size$(0.25{\sim}1.0mm$, flow rate $20{\sim}80m{\ell}/min)$. Also cholesterol in the pancreas was removed. The highest extraction efficiency was 2500psi, $35^{\cdot}C$, 0.25mm of pancreas size. The enzyme activity of the pancreas produced from this work showed high value compared with imported pancreas.

  • PDF

Characterization of the Yellow Croaker Larimichthys polyactis muscle Oil Extracted with Supercritical Carbon Dioxide and an Organic Solvent

  • Lee, Joo-Hee;Asaduzzaman, A.K.M.;Yun, Jun-Ho;Yun, Jun-Hyun;Chun, Byung-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.15 no.4
    • /
    • pp.275-281
    • /
    • 2012
  • Yellow croaker Larimichthys polyactis muscle oil was extracted using an environmental friendly solvent, supercritical carbon dioxide (SC-$CO_2$), in a semi-batch flow extraction process. SC-$CO_2$ was applied at temperature $35^{\circ}C$ to $45^{\circ}C$ and $150^{\circ}C$ to $250^{\circ}C$ bar of pressure. The flow rate of $CO_2$ (27.79 g/min) was constant throughout the entire 1.5 h extraction period. The oil extraction yield was influenced by the physical properties of SC-$CO_2$ at different temperatures and pressures. The extracted oil was analyzed by gas chromatography to determine the fatty acid composition. According to our results, the SC-$CO_2$ extracted oil was high in eicosapentaenoic acid and docosahexaenoic acid. In addition, the SC-$CO_2$ extracted oil showed greater stability than n-hexane extracted oil based on the peroxide value and acid value. Thus, the quality of yellow croaker oil obtained by SC-$CO_2$ extraction was slightly higher than that of oil obtained by n-hexane extraction.

부상공정의 색 제거에 대한 pH 및 아민 투여량의 영향

  • No, Seong-Hui;Na, Jae-Un;Kim, Seon-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.741-744
    • /
    • 2000
  • The removal of colours from aqueous solution and/or dispersions has been studied by dispersed-air flotation, in a semi-batch column. Two colours were used for the experiments: Basic Yellow 28 (basic) and Direct Orange 31 (basic). All two were effectively removed by flotation within 8 min. Sodium dodecyl sulfate, sodium oleate and amines were found to be effective as collectors in the removal of colour, which was found to be related to the pH of the solution and the amount of collector added to it, with high collector dosages causing the process to become pH-independent.

  • PDF

Preparation of p-Doped Polypyrrole and its Composition Latex and study on its Electrical Properties (p-Doped Polypyrrole및 composition Latex의 제조와 전도성 및 물성연구)

  • Han, Yu-Dong;Kim, Jung-Hyeon;Kim, Jung-In
    • Korean Journal of Materials Research
    • /
    • v.4 no.7
    • /
    • pp.808-816
    • /
    • 1994
  • The work present here shows the technique to produce p-Doped polypyrrole particles by semibatch dispersion polymerization using steric-stabilizer. Monomer-starved polymerization process was successful to increase the particle size up to 50 nm in case of polyvinylalcohol (PVA) stabilizer, and up to 95 nm in case of methylcellulose stabilizer. The particle size and the bulk conductivity changed with the feed rates of monomer, the concentrations of initiator (dopant) and the type, molecular weight, concentrations of steric-stabilizer.

  • PDF

Alcoholic Fermentation of Traditional Kanjang by Semi-pilot Scale Bioreactor Systems (Semi-pilot plant 규모 bioreactor를 이용한 재래식 간장의 알코올발효)

  • Kwon, Kwang-Il;Lee, Jong-Gu;Choi, Jong-Dong;Chung, Hyun-Chae;Ryu, Mun-Kyun;Im, Moo-Hyeog;Kim, Ki-Ju;Choi, Yong-Hoon;Kim, Young-Ji;Choi, Cheong;Choi, Kwang-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.103-110
    • /
    • 2003
  • Stable production of fermented kanjang containing 1.8% (v/v) ethanol was obtained within four days using traditional kanjang containing 4% added glucose in packed-bed bioreactor systems filled with immobilized Zygosaccharomyces rouxii and Candida versatilis on porous alumina ceramic bead carrier at $28{\pm}0.5^{\circ}C$ and aeration rate of 0.05 vvm. Specific rates of alcohol production for Z. rouxii and C. versatilis were 0.0033 and 0.0031/day, respectively, and those of glucose consumption were both -0.0087/day in the batch type of alcoholic fermentation. In semi-continuous alcoholic fermentation at a dilution rate of 0.25/day, specific rates of alcohol production for Z. rouxii and C. versatilis were 0.0045 and 0.0029/day, and those of glucose consumption were -0.01 and -0.008/day, respectively, using identical bioreactor system. Similar specific rates of alcohol production were observed both in the batch or semi-continuous process and in the continuous one at the dilution rate of 0.25/day. Sensory characteristics of all alcoholic-fermented kanjang by Z. rouxii, C. versatilis, and a mixture of both yeasts (2:1, w/w) were shown to be significantly superior to those of home-made kanjang as revealed through organoleptic evaluation tests (p<0.05).

Biological production of 1,3-propanediol using crude glycerol derived from biodiesel process (바이오디젤 부산물인 폐글리세롤을 이용한 생물학적 1,3-propanediol 생산)

  • Jun, Sun-Ae;Kang, Cheol-Hee;Kong, Sean-W.;Sang, Byoung-In;Um, Young-Soon
    • KSBB Journal
    • /
    • v.23 no.5
    • /
    • pp.413-418
    • /
    • 2008
  • The production of 1,3.propanediol (1,3-PD) was investigated with Klebsiella pneumoniae DSM2026 and K. pneumoniae DSM4799 using crude glycerol obtained from biodiesel industry. Crude glycerol was used without prior purification to investigate effects of impurities in crude glycerol on 1,3-PD production. In the batch cultures, 1,3-PD production with crude glycerol was $1.1{\sim}2.5$ times higher than that with pure glycerol, indicating that crude glycerol is even a better substrate than pure glycerol for 1,3-PD fermentation. When glucose was added, 1,3-PD production and yield decreased in spite of enhanced cell growth. Furthermore, the addition of glucose was found to increase 2,3-butanediol, a by-product, significantly because of the change in metabolism in the presence of glucose. In semi-batch cultures without glucose addition, 26 g/L 1,3-PD was produced with crude glycerol, which was $2{\sim}3$ times higher than that with pure glycerol. Based on our results, it was clearly shown that crude glycerol is an effective substrate for biological 1,3-PD production, making it more feasible to produce 1,3-PD at a lower price.

Synthesis of Monodisperse ZnO Nanoparticles Using Semi-batch Reactor and Effects of HPC Affecting Particle Size and Particle Size Distribution (반회분식 반응을 이용한 단분산 ZnO 나노 입자의 제조 및 입자의 크기와 입도 분포에 영향을 미치는 HPC의 작용)

  • Rho, Seung Yun;Kim, Ki Do;Song, Gun Yong;Kim, Hee Taik
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.274-279
    • /
    • 2006
  • To synthesize ZnO colloidal solution by a sol-gel process, zinc acetate ($C_{4}H_{6}O_{4}Zn{\cdot}2H_{2}O{\cdot}0.2\;mol$) and lithium hydroxide ($LiOH{\cdot}H_{2}O{\cdot}0.14\;mol$) in the ethanol were added to the solution containing a dispersing agent, hydroxypropyl cellulose (HPC). The nanosize and physical shape of the synthesized ZnO particles were determined by HPC acting as the dispersing agent. Nanosized ZnO particles were also obtained by a precipitation method based on zinc-2-ethylhexagonate. The precipitates were characterized by DLS, XRD, FE-SEM, and UV-vis. As the results, the ZnO colloids tend to self-assemble into a well-ordered hexagonal close-packed structure. The ZnO nanoparticles have an average diameter of nearly 40 nm with a narrow size distribution.

New Design of a Permanent Magnet Linear Synchronous Motor for Seamless Movement of Multiple Passive Carriers (다수의 수동형 캐리어를 연속 이송시킬 수 있는 새로운 영구자석 선형동기전동기의 설계)

  • Lee, Ki-Chang;Kim, Min-Tae;Song, Eui-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.456-463
    • /
    • 2015
  • Nowadays, small quantity batch production, which is so-called a flexible manufacturing system, is a major trend in the modern factory automation industry. The demands for new transportation system are increased gradually, with which multiple passive carriers carrying materials and semi-products are precisely and individually controlled along a single closed rail. Thus, a new type of permanent magnet linear synchronous motor (PMLSM), which consists of state coils on a single rail and PM movers as many as carriers, is proposed in this paper. The rail can be segmented as modules with pairs of coils and a current amplifier, which makes the transportation system simple; therefore, the rail can be easily extended and repaired. A design method of the new PMLSM with a single carrier is proposed, which can be thought as a new version of PMLSM, a coil-segmented coreless PMLSM (CS-CLPMLSM). Experimental setup for it is made, and propulsion results show that with the help of a new effective coil selection and switching algorithms, the conventional current-based vector control is sufficient to fulfill the position and velocity control of the new PMLSM. The proposed PMLSM is expected to fulfill seamless servo-control of multiple carriers also in process line, such as a new generation of flat panel display manufacturing line.

Design of Recycle Bubble Column Reactor for Continuous Enzymatic Hydrolysis of Cellulose (섬유소의 연속 효소 가수분해를 위한 순환식 기포탑 반응기의 설계)

  • 김춘영;홍석표정봉우이태원
    • KSBB Journal
    • /
    • v.5 no.1
    • /
    • pp.59-67
    • /
    • 1990
  • Enzymatic hydrolysis of insoluble cellulose was performed in a bubble column with tangential flow ulrafiltration membrane unit. The reactor was operated in a batch mode as well as semi-continuous and continuous with continuous removal of products through the tangential flow ultrafiltration membrane. The optimum superficial gas velocity was 1-3cm / sec so as to avoid bubble coalescence and enzyme denaturation. In continuous and selni-cotinuous process, the conversion was gradually increased but the total reduced sugar concentration was drcastically dereased with the dilution rate. It was concluded that the bubble column attaching tangential flow ultrafiltration membrane unit was effective on continuous hydrolysis of cellulose and recovery of enzyme.

  • PDF

Effect of Culture Conditions and Signal Peptide on Production of Human Recombinant N-Acetylgalactosamine-6-Sulfate Sulfatase in Escherichia coli BL21

  • Hernandez, Alejandra;Velasquez, Olga;Leonardi, Felice;Soto, Carlos;Rodriguez, Alexander;Lizaraso, Lina;Mosquera, Angela;Bohorquez, Jorge;Coronado, Alejandra;Espejo, Angela;Sierra, Rocio;Sanchez, Oscar F.;Almeciga-Diaz, Carlos J.;Barrera, Luis A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.5
    • /
    • pp.689-698
    • /
    • 2013
  • The production and characterization of an active recombinant N-acetylgalactosamine-6-sulfate sulfatase (GALNS) in Escherichia coli BL21(DE3) has been previously reported. In this study, the effect of the signal peptide (SP), inducer concentration, process scale, and operational mode (batch and semi-continuous) on GALNS production were evaluated. When native SP was presented, higher enzyme activity levels were observed in both soluble and inclusion bodies fractions, and its removal had a significant impact on enzyme activation. At shake scale, the optimal IPTG concentrations were 0.5 and 1.5 mM for the strains with and without SP, respectively, whereas at bench scale, the highest enzyme activities were observed with 1.5 mM IPTG for both strains. Noteworthy, enzyme activity in the culture media was only detected when SP was presented and the culture was carried out under semi-continuous mode. We showed for the first time that the mechanism that in prokaryotes recognizes the SP to mediate sulfatase activation can also recognize a eukaryotic SP, favoring the activation of the enzyme, and could also favor the secretion of the recombinant protein. These results offer significant information for scaling-up the production of human sulfatases in E. coli.