• Title/Summary/Keyword: semi-batch process

Search Result 44, Processing Time 0.027 seconds

Optimization of a semi-batch esterification reactor (반회분 에스테르화 반응기의 최적화)

  • 이융효;박선원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.582-588
    • /
    • 1993
  • A scheme of dynamic optimization for batch reactor his been developed and applied to a semi-batch esterification reactor. To obtain optimal operating conditions for the given semi-batch reactor system with complex reaction kinetic and process constraints, a general nonlinear programming solver and finite element techniques have been introduced. The optimization results for the complex reactor system have been compared with those of Kumar et al. [1984] to show better optimization performance. The proposed optimizing scheme has been applied to the free end time problem to obtain the realistic operating condition. The results can supply valuable information for economic operation of the given batch esterification reactor.

  • PDF

Preparation of Highly Cross-Linked, Monodisperse Poly(methyl methacrylate) Microspheres by Dispersion Polymerization; Part II. Semi-continuous Processes

  • Lee, Ki-Chang;Lee, Sang-Yun
    • Macromolecular Research
    • /
    • v.16 no.4
    • /
    • pp.293-302
    • /
    • 2008
  • In our previous publication, the problem of particle deformation and coagulation at the nucleation stage in the presence of cross-linker was intensely studied by seeded batch dispersion polymerization of methyl methacrylate (MMA). In the present work, highly cross-linked, monodisperse PMMA particles were prepared under various reaction conditions by seeded semi-continuous process. Monodisperse, $6.5{\mu}m$-diameter PMMA particles containing up to 8 wt% of DVB or EGDMA were successfully made by seeded semi-continuous process and multi-semi-continuous addition process, respectively. Therefore, this study shows that seeded semi-continuous process is more effective and efficient to prepare highly cross-linked, monodisperse particles than non-seeded and seeded batch processes.

Optimization of Semi-Batch Process for Ethanol Production (에타놀 생산을 위한 Semi-batch 발효 공정의 최적화)

  • Lee, Jae-Heung
    • Microbiology and Biotechnology Letters
    • /
    • v.11 no.1
    • /
    • pp.33-38
    • /
    • 1983
  • As flocculent strains are likely to have considerable potential for internal cell recycle, kinetic studies on glucose medium with flocculent Saccharomyces uvarum were carried out in batch and continuous culture. Using a mathematical model, the kinetic parameters at each temperature and pH were estimated in order to establish optimal conditions. It was found that an overall optimum temperature for growth and ethanol production in the range 33-35$^{\circ}C$ was desirable. With regard to the effect of pH, ethanol production by S. uvarum was found to be relatively insensitive to pH value between 4 and 6, with an optimum pH of around 5. At these optimal conditions a maximum ethanol productivity of 12 g/$\ell$/h was determined using semi-batch process together with 5. uvarum.

  • PDF

Morphology of Poly(butyl acrylaye)/Poly(methyl methacrylate) Composite Latex Prepared by 2-stage Dispersion Polymerization (중합공정에 따른 PBA/PMMA Composite Latex 모폴로지의 연구)

  • Lee, Ki-Chang;Choe, Hyeon-Seong
    • Elastomers and Composites
    • /
    • v.46 no.1
    • /
    • pp.60-69
    • /
    • 2011
  • The various types of PBA/PMMA composite latexes were prepared by $2.1\;{\mu}m$ PBA seeded batch and seeded semi-continuous dispersion polymerization. The morphology of the PBA/PMMA composite latexes by seeded batch process was found to be closely dependant on the weight ratios of methanol/water in polymerization medium and of PBA seed/MMA at the second stage. In general, egg, snowman, confetti, peanut-like nonspherical composite latex particles were formed with increasing amount of water and MMA as a result of the occurrence of the phase separation between PBA seed and PMMA. The morphology of the PBA/PMMA composite latexes by seeded semi-continuous process was controlled by the addition time of MMA, especially, spherical shaped core(PBA)/shell(PMMA) composite latex particles were prepared under the monomer-starved condition at the second stage.

Ethanol Production from Lignocellulosic Biomass by Simultaneous Saccharification and Fermentation Employing the Reuse of Yeast and Enzyme

  • KIM, JUN-SUK;KYUNG-KEUN OH;SEUNG-WOOK KIM;YONG-SEOB JEONG;SUK-IN HONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.3
    • /
    • pp.297-302
    • /
    • 1999
  • Simultaneous saccharification and fermentation (SSF) experiments were carried out with a lignocellulosic biomass. The effects of temperature on enzymatic saccharification and the ethanol fermentation were also investigated. The batch SSF process gave a final ethanol concentration of 10.44 g/l and equivalent glucose yield of 0.55 g/g, which was increased by 67% or higher over the saccharification at 42℃. The optimal operating condition was found to vary in several parameters, such as the transmembrane pressure, permeation rate, and separation coefficient, related to the SSF combined with membrane system (semi-batch system). When the fermentation was operated in a semi-batch mode, the efficiency of the enzymes and yeast lasted three times longer than in a batch mode.

  • PDF

Entrainer-Enhanced Semi-Batch Reactive Distillation for Synthesis of Butyl Acetate (부틸 아세테이트 합성을 위한 공비첨가제 사용 반회분식 반응증류)

  • Yang, Jeongin;Jeon, Hyeongcheol;Han, Myungwan
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.341-352
    • /
    • 2017
  • Butyl acetate is produced from acetic acid and butanol via an esterification reaction in a reactive distillation column. Entrainer can be used for efficient removal of produced water from the reaction region, leading to significant improvement of the column performance. Batch reactive distillation has clear advantages over continuous one in terms of flexibility and adaptability in a small plant. We studied batch and semi-batch reactive distillation processes through process simulation and pilot-scale experiments. We investigated process configuration and type of entrainer for improvement of the column performance and suggested a novel cyclic operation strategy using the semi-batch reactive distillation column. The cyclic strategy was shown to give relatively high production rate and stable operation.

Characteristics of Thermal Hazard in Methylthioisocyanate Synthesis Reaction Process (Methylthioisocyanate 합성반응 공정의 열적위험 특성)

  • Han, In-Soo;Lee, Keun-Won;Lee, Joo-Yeob
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.77-87
    • /
    • 2012
  • Compared to a batch reactor, where all reactants are initially charged to the reactor, the semi-batch reactor presents serious advantages. The feed of at least one of the reactants provides an additional way of controlling the reaction course, which represents a safety factor and increases the constancy of the product quality. The aim of this study was to investigate the characteristics of thermal hazard such as a feed time, catalysis concentration and solvent concentration in methylthioisocyanate(MTI) synthesis reaction process. The experiments were carried out by the Multimax reactor system and Accelerating rate calorimeter(ARC). The MTI synthesis reaction process has many reaction factors and complicated reaction mechanism of multiphase reaction. Through this study, we can use as a tool for assessment of thermal hazard of other reaction processes by applying experiment method provided.

Catalytic Hydrogenation of Triglyceride in a Semi-batch Reactor (Semi-batch 반응기에서의 트리글리세라이드 접촉 수소화 반응)

  • An, Jae-Yong;Lee, Choul-Ho;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.101-106
    • /
    • 2019
  • The aim of this study is to investigate the feasibility of an Ni-SA catalyst, which was prepared from nickel, kieselguhr, and alumina, for the hydrogenation of triglyceride in a bench-scale reactor. Ni-SA powders were prepared by precipitating nickel precursors on a silica and alumina support. The powder was reduced in a hydrogen flow, mixed with a saturated palm oil, and then cooled to prepare an Ni-SA catalyst tablet. The sizes of NiO crystals of a commercial Pricat catalyst and the Ni-SA catalyst prepared in this study were $35{\AA}$ and $38{\AA}$, respectively. The pore volume and pore size of the Ni-SA catalyst was much larger than the pore volume and pore size of the Pricat catalyst. In addition, the average particle size of the Ni-SA catalyst was much smaller than that of the Pricat catalyst. The triglyceride hydrogenation reaction was carried out in a semi-batch reactor using catalysts impregnated with oil and molded into tablets. It was found that the Ni-SA catalyst was superior to the commercial Pricat catalyst in triglyceride hydrogenation, which could be ascribed to the raw material and the products being less influenced by the diffusion resistance in the pores of the Ni-SA catalyst. The Ni-SA catalyst prepared in this study has the potential to replace the Pricat catalyst as a catalyst for use in the commercial process for hydrogenation of triglyceride.

Production of PBT(polybutylene terephthalate) Oligomer from Recycled PET(polyethylene terephthalate) (재활용 PET(polyethylene terephthalate)를 이용한 PBT(polybutylene terephthalate) 올리고머 제조)

  • Cho, Minjeong;Yang, Jeongin;Noh, Seunghyun;Joe, Hongjae;Han, Myungwan
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.437-442
    • /
    • 2016
  • A new route for PBT (Poly butylene terephthalate) production from recycled PET (Poly ethylene terephthalate) has been explored. The route consists of glycolysis of PET (Poly ethylene terephthalate) wastes using 1,4-butandiol into BHBT oligomers and polycondensation of the oligomers into PBT oligomer. This process uses post-consumer or post-industrial recycled PET and converts it into high-end PBT type engineering thermoplastic via a chemical recycling process. Zink acetate was used as a catalyst for both glycolysis and polycondensation. Two types of reactor for the glycolysis, batch and semi-batch reactor, were investigated and their performances were compared. Semi-batch reactor removes ethylene glycol (EG) and THF (tetrahydrofuran) during the reaction. Amounts of EG and THF generated during the glycolysis reaction were measured and used as criteria for the reactor performance. Performance of semi-batch reactor was shown to be better than that of batch reactor. Optimum reaction condition for the semi-batch reactor was BD/PET ratio of 4, and reaction temperature of $220^{\circ}C$, giving high EG yield (max 91%) and low production of THF. In addition, it was confirmed that the molecular weight of PBT oligomer increases in accordance with the progress of the polycondensation reaction.

Photo-decomposition Characteristics of 2,4,6-Trinitrotoluene in a UV/$H_2O_2$ Process (2,4,6-Trinitrotoluene (TNT)의 광분해 특성)

  • Kwon, Bum-Gun;Choi, Won-Yong;Yoon, Je-Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.6
    • /
    • pp.775-788
    • /
    • 2010
  • The decomposition of 2,4,6-trinitrotoluene (TNT) and the mass balance of nitrogen (N) species as products were investigated in a UV/H2O2system by varying pH, concentrations of $H_2O_2$, and $O_2$. All experiments were conducted in a semi-batch system employing a 50 mL reaction vessel and a coil-type quartz-tube reactor. In contrast with previous studies employing batch mode, TNT decomposition in the semi-batch mode was proportionally enhanced by increasing $H_2O_2$ concentration to 10 mM (0.034%), indicatingthat an inhibitory effect of excess $H_2O_2$on hydroxyl radical (${\cdot}OH$) can be negligible. N compounds are released as $NO_2^-$ in the early stages of the reaction, but $NO_2^-$ is rapidly oxidized to $NO_3^-$ by means of ${\cdot}OH$. $NH_4^+$ was also detected in this study and showed gradually the increase with increasing reaction time. In this study, $NH_4^+$ production can involve the reduction of nitro group of TNT concurrent with the production of $NO_3^-$. Of the N species originating from TNT decomposition, 12 ~ 72% were inorganic forms (i.e. [$NO_3^-$] + [$NO_2^-$] + [$NH_4^+$]). This result suggests that the large remaining N portions indicate that unidentified N compounds can exist.