• 제목/요약/키워드: semi rigid connection

검색결과 150건 처리시간 0.019초

반강접 접합부의 요소인 개량 T-stub의 비탄성 해석과 약산식 (Inelastic Analyses and Simplified Equations for Improved T-stub Element Used at Semi-Rigid Connections)

  • 조재철;김원기;이명재
    • 한국강구조학회 논문집
    • /
    • 제11권3호통권40호
    • /
    • pp.271-279
    • /
    • 1999
  • 보와 기둥과의 반강접에 관한 최근 연구로서 기둥 면과 T-stub 플랜지 사이에 격리재를 설치하는 개량된 T-stub 요소를 개발하고 있다. 개량된 T-stub에 대한 비탄성 해석을 수행하였으며, 그 결과를 실험값과 비교 분석하였다. 비탄성 해석 방법은 기둥 면과 격리재 사이에 간격요소(gap element)를 적용하고, 고력볼트에 초기 응력을 부여하여 실험값과 잘 일치하는 결과를 보인다. 실무에서의 설계와 해석에 적용할 수 있는 약산식으로서 T-stub의 초기 강성도와 압축하중에 의한 소성내력에 관한 설계식을 제시한다.

  • PDF

On the assessment of modal nonlinear pushover analysis for steel frames with semi-rigid connections

  • Zarfam, Panam;Mofid, Massood
    • Structural Engineering and Mechanics
    • /
    • 제32권3호
    • /
    • pp.383-398
    • /
    • 2009
  • Applying nonlinear statistical analysis methods in estimating the performance of structures in earthquakes is strongly considered these days. This is due to the methods' simplicity, timely lower cost and reliable estimation in seismic responses in comparison with time-history nonlinear dynamic analysis. Among nonlinear methods, simplified to be incorporated in the future guidelines, Modal Pushover Analysis, known by the abbreviated name of MPA, simply models nonlinear behavior of structures; and presents a very proper estimation of nonlinear dynamic analysis using lateral load pattern appropriate to the mass. Mostly, two kinds of connecting joints, 'hinge' and 'rigid', are carried out in different type of steel structures. However, it should be highly considered that nominal hinge joints usually experience some percentages of fixity and nominal rigid connections do not employ totally rigid. Therefore, concerning the importance of these structures and the significant flexibility effect of connections on force distribution and elements deformation, these connections can be considered as semi-rigid with various percentages of fixity. Since it seems, the application and implementation of MPA method has not been studied on moment-resistant steel frames with semi rigid connections, this research focuses on this topic and issue. In this regard several rigid and semi-rigid steel bending frames with different percentages of fixity are selected. The structural design is performed based on weak beam and strong column. Followed by that, the MPA method is used as an approximated method and Nonlinear Response History Analysis (NL-RHA) as the exact one. Studying the performance of semi-rigid frames in height shows that MPA technique offers reasonably reliable results in these frames. The methods accuracy seems to decrease, when the number of stories increases and does decrease in correlation with the semi-rigidity percentages. This generally implies that the method can be used as a proper device in seismic estimation of different types of low and mid-rise buildings with semi-rigid connections.

The effects of beam-column connections on behavior of buckling-restrained braced frames

  • Hadianfard, Mohammad Ali;Eskandari, Fateme;JavidSharifi, Behtash
    • Steel and Composite Structures
    • /
    • 제28권3호
    • /
    • pp.309-318
    • /
    • 2018
  • Buckling Restrained Braced (BRB) frames have been widely used as an efficient seismic load resisting system in recent years mostly due to their symmetric and stable hysteretic behavior and significant energy dissipation capacity. In this study, to provide a better understanding of the behavior of BRB frames with various beam-column connections, a numerical study using non-linear finite element (FE) analysis is conducted. All models are implemented in the Abaqus software package following an explicit formulation. Initially, the results of the FE model are verified with experimental data. Then, diverse beam-column connections are modeled for the sake of comparison from the shear capacity, energy dissipation and frame hysteresis behavior points of view until appropriate performance is assessed. The considered connections are divided into three different categories: (1) simple beam-column connections including connection by web angle and connection by seat angle; (2) semi-rigid connection including connection by web and seat angles; and (3) rigid beam-column connections by upper-lower beam plates and beam connections with web and flange splices. Results of the non-linear FE analyses show that these types of beam-column connections have little effect on the maximum story drift and shear capacity of BRB frames. However, the connection type has a significant effect on the amount of energy dissipation and hysteresis behavior of BRB frames. Also, changes in length and thickness of the angles in simple and semi-rigid connections and changes in length and thickness of plates in rigid connections have slight effects (less than 4%) on the overall frame behavior.

반강접 접합부를 적용한 초대형 부유식 구조물 상부구조체에 대한 동적해석 (Dynamic Analysis of Superstructures on Very Large Floating Structure with Semi-Rigid Connections)

  • 송화철;김우년
    • 한국항해항만학회지
    • /
    • 제29권5호
    • /
    • pp.389-394
    • /
    • 2005
  • 초대형 부유식 구조물의 경우 지진하중보다 파랑하중에 의한 영향이 크게 작용하기 때문에 파랑하중에 의한 하부부체의 변형이 상부구조물에 부가모멘트를 발생시키는 요인이 된다. 이러한 부가모멘트를 저감시키기 위해 본 연구에서는 강접합과 핀접합 사이의 거동을 하는 반강접 접합부를 적용하였다. 초대형 부유식 구조물의 상부구조체에 반강접 접합부를 적용할 경우 보의 부가모멘트를 감소시킬 수 있으며, 더욱 경제적인 설계가 가능하다. 본 논문에서는 4경간 3층 예제구조물에 대하여 파랑하중에 의한 영향을 분석하고, 구조물의 반강접 접합부 적용에 따른 효율성을 검토하였다. 접합부는 각형강관 외-다이아프램 접합부를 적용하였으며 파랑하중에 의한 동적 특성을 분석하기 위하여 시간 이력해석을 수행하였다. 초대형 부유식 구조물의 상부구조물의 경우 파랑하중에 의해서 정하중의 최대모멘트 응답이 강접 구조물에서는 $33\%$ 증가하였으며, 스프링 모델을 이용한 반강접 구조물에서는 $26\%$ 증가하였다.

3차원 플로팅 구조물의 반강접 접합부 해석 (Analysis of Semi-Rigid Connections on 3D Floating Structures)

  • 박종서;송화철
    • 한국항해항만학회지
    • /
    • 제36권3호
    • /
    • pp.175-180
    • /
    • 2012
  • 플로팅 상부구조물은 일반 건축물과 형태는 같지만 기초가 땅이 아닌 하부 부체에 지지되는 구조물로 파랑하중에 의한 영향을 크게 받으며, 파랑하중에 의한 하부구조물의 변형이 접합부에 영향을 미쳐 상부구조물의 이용자에게 사용성 및 안전성의 문제를 발생시키게 된다. 이에 따라 본 논문에서는 3차원 플로팅 구조물의 상부구조물과 하부구조물을 일체화한 전해석을 통하여 강접합과 반강접 접합에 대해 탄성 해석을 실시하였다. 구조물의 전해석과 하부구조물을 제외한 분리해석을 비교 분석 하였으며 탄성 해석을 통해 파랑하중의 CASE를 나누어 파랑하중의 변화에 따른 구조물의 모멘트 및 변위를 접합부에 따라 분류하고 비교하였다.

Semi-rigidity of cap plate and extended end plate connections

  • Nassani, Dia Eddin;Chikho, Abdul Hakim;Akgonen, Aliriza llker
    • Steel and Composite Structures
    • /
    • 제23권5호
    • /
    • pp.493-499
    • /
    • 2017
  • The behaviour of steel frames is highly influenced by the beam-column connections. Traditionally, Steel frames were usually designed assuming that connections are ideally pinned or fully rigid. A semi-rigid connection, however, creates a balance between the two extreme approaches mentioned above. In this research, two full scales of Extended End Plate Connections (EEPCs) were tested. Mathematical and numerical models were used to analyse the connections, and close correlations were found between these models and the corresponding tested specimens, which confirmed the confidence in the experimental results. The experimental results obtained enrich the available test data about behaviour of EEPC. In addition, the purpose of studying EEPC experimentally is to compare the stiffness and moment-rotation curve of EEPCs with that of Cap Plate Connections (CPCs), which were tested in a previous work. CPCs have not been studied sufficiently in the literature. The results obtained show that the typical CPC reduces the connection stiffness and these results will make a valuable contribution to the available test data in the research area of CPC.

Influence of stiffeners on the performance of blind-bolt end-plate connections to CFST columns

  • Ding, Fa-xing;Pan, Zhi-cheng;Liu, Peng;Huang, Shi-jian;Luo, Liang;Zhang, Tao
    • Steel and Composite Structures
    • /
    • 제36권4호
    • /
    • pp.447-462
    • /
    • 2020
  • The paper aims to investigate the mechanical mechanism and seismic effect of stiffeners in blind bolt endplate connection to CFST column. A precise 3D finite element model with considering the cyclic properties of concrete and steel materials was established, and the efficiency was validated through monotonic and cyclic test data. The deforming pattern and the seismic performance of the unstiffened and stiffened blind bolt endplate connections were investigated. Then a parametric analysis was conducted to analyze the contribution of stiffeners and the joint working behaviors with endplate under cyclic load. The joint stiffness classifications were compared and a supplement stiffness classification method was proposed, and the energy dissipation ability of different class connections were compared and discussed. Results indicated that the main deformation pattern of unstiffened blind bolt endplate connections was the local bending of end plate. The vertical stiffeners can effectively alleviate the local bending deformation of end plate. And influence of stiffeners in thin endplate and thick endplate was different. Based on the stiffness of external diaphragm welded connection, a more detailed rigidity classification was proposed which included the pin, semi-rigid, quasi-rigid and rigid connection. Beam was the main energy dissipation source for rigid connection. For the semi-rigid and quasi-rigid connection, the extended endplate, stiffeners and steel beam would all participate in the energy dissipation.

Analysis and tests of flexibly connected thin-walled channel frames

  • Tan, S.H.;Seah, L.K.
    • Structural Engineering and Mechanics
    • /
    • 제2권3호
    • /
    • pp.269-284
    • /
    • 1994
  • The analysis and tests of thin-walled channel frames including nonlinear flexible or semi-rigid connection behaviour is presented. The semi-rigid connection behaviour is modelled using a mathematical approximation of the connection flexibility-moment relationship. Local instability such as local buckling and torsional flexural buckling of the member are included in the analysis. The full response of the frame, up to the collapse load, can be predicted. Experimental investigation was carried out on a series of simple double storey symmetrical frames with the purpose of verifying the accuracy and validity of the analysis. Agreement between the theoretical and experimental results is acceptable. The investigation also shows that connection flexibility and local instability such as local buckling and torsional flexural buckling can affect the behaviour and strength of thin-walled frames significantly. The results can also provide further insight into the advanced study of practical structures where interaction between flexible connections and phenomenon associated with thin-walled members are present.

Analysis of rigid and semi-rigid steel-concrete composite joints under monotonic loading - Part II: Parametric study and comparison with the Eurocode 4 proposal

  • Amadio, C.;Fragiacomo, M.
    • Steel and Composite Structures
    • /
    • 제3권5호
    • /
    • pp.371-382
    • /
    • 2003
  • This paper analyses the response of rigid and semi-rigid steel-concrete composite joints under monotonic loading. The influence of some important parameters, such as the presence of column web stiffening and the mechanical properties of component materials, is investigated by using a three-dimensional finite element modelling based on the Abaqus code. Numerical and experimental responses of different types of composite joints are also compared with the analytical results obtained using the component approach proposed by Eurocode 4. The results obtained with this approach generally fit well with the numerical and experimental values in terms of strength. Conversely, some significant limits arise when evaluating initial stiffness and non-linear behaviour of the composite joint.

Analysis of rigid and semi-rigid steel-concrete composite joints under monotonic loading - Part I: Finite element modelling and validation

  • Amadio, C.;Fragiacomo, M.
    • Steel and Composite Structures
    • /
    • 제3권5호
    • /
    • pp.349-369
    • /
    • 2003
  • The paper concerns the modelling of rigid and semi-rigid steel-concrete composite joints under monotonic loading through use of the Abaqus program, a widespread finite element code. By comparing numerical and experimental results obtained on cruciform tests, it is shown that the proposed modelling allows a good fit of the global joint response in terms of moment-rotation law. Even the local response in terms of stresses and strains is adequately predicted. Hence, this numerical approach may represent a useful tool for attaining a better understanding of experimental results. It may also be used to perform parametric analyses and to calibrate simplified mechanical models for practical applications.