• Title/Summary/Keyword: semantic topic

Search Result 190, Processing Time 0.024 seconds

Literature Review of Extended Reality Research in Consumer Experience: Insight From Semantic Network Analysis and Topic Modeling

  • Hansol Choi;Hyemi Lee
    • Asia Marketing Journal
    • /
    • v.26 no.1
    • /
    • pp.45-59
    • /
    • 2024
  • Extended Reality (XR) technology, the umbrella term covering hyper-realistic technologies, is known to enhance consumer experience and is therefore developing rapidly and being utilized across various industries. Growing studies have examined XR technology and consumer experience; however, the literature has failed to fully explore hyper-realistic technology through a holistic perspective. To fill this gap, we analyzed 720 Korean and international articles through semantic network analysis and topic modeling and identified the literature on XR research in consumer experience. As a result, we extracted six main topics: "Tourism," "Buying Behavior," "XR Technology Acceptance," "Virtual Space," "Game," and "XR Environment." The results provide comprehensive insight on XR technology in consumer experience, whereas the literature is bounded on the production side as revealing a lack of academic discourse on consumer rights and responsibilities. Research reflecting the consumer welfare perspective is, therefore, recommended for future studies.

Ontology describing Process Information for Web Services Discovery (웹 서비스 발견을 위해 프로세스 정보를 기술하는 온톨로지)

  • Yu, Jeong-Youn;Lee, Kyu-Chul
    • The Journal of Society for e-Business Studies
    • /
    • v.12 no.3
    • /
    • pp.151-175
    • /
    • 2007
  • Until now, most semantic web service discovery research has been carried out using either Web Service Modeling Ontology (WSMO) or a profile of OWL-based Web Service ontology (OWL-S). However, such efforts have focused primarily on service name and input/output ontology. Thus, the internal information of a service has not been utilized, and queries regarding internal information such as 'Find book-selling services allowing payment after delivery' are not addressed. This study outlines the development of TM-S (Topic Maps for Service) ontology and TMS-QL (TM-S Query Language), two novel technologies that address the aforementioned issues in semantic web service discovery research. TM-S ontology describes the behavior of services using process information and consists of three sub-ontologies: process signature ontology, process structure ontology and process concept ontology. TMS-QL allows users to describe service discovery requests.

  • PDF

A methodology for discovering business processes in different semantic levels (의미 수준이 다른 비즈니스 프로세스의 검색 방법)

  • Choe Yeong Hwan;Chae Hui Gwon;Kim Gwang Su
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.1128-1135
    • /
    • 2003
  • e-Transformation of an enterprise requires the collaboration of business processes to be suited to the business participants' purpose. To realize this collaboration, business processes should be implemented as components and the system developers could be able to reuse the components for their specific purpose. The first step of this collaboration is the discovery of exact components for business processes. A dilemma, however, is the fact that there are thousands or even millions of business processes which vary from one enterprise to another. Moreover, business processes could be decomposed into multiple levels of semantics and classified into several process areas. In general, discovery of exact business processes requires understanding of widely adopted classification schemes such as CBPC, OAGIS, or SCOR. To cope with this obstacle, business process metadata should be defined and managed regardless of specific classification schemes to support effective discovery and reuse of business processes components. In this paper, a methodology to discover business process components published in different semantic levels is proposed. The proposed methodology represents the metadata of business process components as topic maps stored in a registry and utilizes the powerful features of topic maps for process discovery. TM4J, an open-source topic map engine, is modified to support concept matching and navigation. With the implemented tool, application system developers can discover and publish the business process components effectively.

  • PDF

A study on integrating and discovery of semantic based knowledge model (의미 기반의 지식모델 통합과 탐색에 관한 연구)

  • Chun, Seung-Su
    • Journal of Internet Computing and Services
    • /
    • v.15 no.6
    • /
    • pp.99-106
    • /
    • 2014
  • Generation and analysis methods have been proposed in recent years, such as using a natural language and formal language processing, artificial intelligence algorithms based knowledge model is effective meaning. its semantic based knowledge model has been used effective decision making tree and problem solving about specific context. and it was based on static generation and regression analysis, trend analysis with behavioral model, simulation support for macroeconomic forecasting mode on especially in a variety of complex systems and social network analysis. In this study, in this sense, integrating knowledge-based models, This paper propose a text mining derived from the inter-Topic model Integrated formal methods and Algorithms. First, a method for converting automatically knowledge map is derived from text mining keyword map and integrate it into the semantic knowledge model for this purpose. This paper propose an algorithm to derive a method of projecting a significant topic map from the map and the keyword semantically equivalent model. Integrated semantic-based knowledge model is available.

($OntoFrame^{(R)}$;an Information Service System based on Semantic Web Technology (시맨틱 웹 기술 기반 정보서비스 시스템 $OntoFrame^{(R)}$)

  • Sung, Won-Kyung;Lee, Seung-Woo;Hahn, Sun-Hwa;Jung, Han-Min;Kim, Pyung;Lee, Mi-Kyung;Park, Dong-In
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.87-88
    • /
    • 2008
  • As an information service system based on semantic web technology, $OntoFrame^{(R)}$ takes aim at a framework for providing analysis and fusion services of academic information. It currently consists of three parts: ontologies representing knowledge schema derived from academic information, $OntoURI^{(R)}$ which makes academic information into knowledge, and $OntoReasoner^{(R)}$ which performs inference and search on the knowledge. Unlike existing search engines which provides simple search services, our system provides, based on semantic web technology, several semantic and analytic services such as year-based topic trends in academic information, related topics, topic-based researchers and institutes, researcher network, statistics and regional distribution of academic information.

  • PDF

A Study on Research Trends in the Smart Farm Field using Topic Modeling and Semantic Network Analysis (토픽모델링과 언어네트워크분석을 활용한 스마트팜 연구 동향 분석)

  • Oh, Juyeon;Lee, Joonmyeong;Hong, Euiki
    • Journal of Digital Convergence
    • /
    • v.20 no.2
    • /
    • pp.203-215
    • /
    • 2022
  • The study is to investigate research trends and knowledge structures in the Smart Farm field. To achieve the research purpose, keywords and the relationship among keywords were analyzed targeting 104 Korean academic journals related to the Smart Farm in KCI(Korea Citation Index), and topics were analyzed using the LDA Topic Modeling technique. As a result of the analysis, the main keywords in the Korean Smart Farm-related research field were 'environment', 'system', 'use', 'technology', 'cultivation', etc. The results of Degree, Betweenness, and Eigenvector Centrality were presented. There were 7 topics, such as 'Introduction analysis of Smart Farm', 'Eco-friendly Smart Farm and economic efficiency of Smart Farm', 'Smart Farm platform design', 'Smart Farm production optimization', 'Smart Farm ecosystem', 'Smart Farm system implementation', and 'Government policy for Smart Farm' in the results of Topic Modeling. This study will be expected to serve as basic data for policy development necessary to advance Korean Smart Farm research in the future by examining research trends related to Korean Smart Farm.

Enhancing Document Clustering Method using Synonym of Cluster Topic and Similarity (군집 주제의 유의어와 유사도를 이용한 문서군집 향상 방법)

  • Park, Sun;Kim, Kyung-Jun;Lee, Jin-Seok;Lee, Seong-Ro
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.5
    • /
    • pp.30-38
    • /
    • 2011
  • This paper proposes a new enhancing document clustering method using a synonym of cluster topic and the similarity. The proposed method can well represent the inherent structure of document cluster set by means of selecting terms of cluster topic based on the semantic features by NMF. It can solve the problem of "bags of words" by using of expanding the terms of cluster topics which uses the synonyms of WordNet. Also, it can improve the quality of document clustering which uses the cosine similarity between the expanded cluster topic terms and document set to well cluster document with respect to the appropriation cluster. The experimental results demonstrate that the proposed method achieves better performance than other document clustering methods.

Is Text Mining on Trade Claim Studies Applicable? Focused on Chinese Cases of Arbitration and Litigation Applying the CISG

  • Yu, Cheon;Choi, DongOh;Hwang, Yun-Seop
    • Journal of Korea Trade
    • /
    • v.24 no.8
    • /
    • pp.171-188
    • /
    • 2020
  • Purpose - This is an exploratory study that aims to apply text mining techniques, which computationally extracts words from the large-scale text data, to legal documents to quantify trade claim contents and enables statistical analysis. Design/methodology - This is designed to verify the validity of the application of text mining techniques as a quantitative methodology for trade claim studies, that have relied mainly on a qualitative approach. The subjects are 81 cases of arbitration and court judgments from China published on the website of the UNCITRAL where the CISG was applied. Validation is performed by comparing the manually analyzed result with the automatically analyzed result. The manual analysis result is the cluster analysis wherein the researcher reads and codes the case. The automatic analysis result is an analysis applying text mining techniques to the result of the cluster analysis. Topic modeling and semantic network analysis are applied for the statistical approach. Findings - Results show that the results of cluster analysis and text mining results are consistent with each other and the internal validity is confirmed. And the degree centrality of words that play a key role in the topic is high as the between centrality of words that are useful for grasping the topic and the eigenvector centrality of the important words in the topic is high. This indicates that text mining techniques can be applied to research on content analysis of trade claims for statistical analysis. Originality/value - Firstly, the validity of the text mining technique in the study of trade claim cases is confirmed. Prior studies on trade claims have relied on traditional approach. Secondly, this study has an originality in that it is an attempt to quantitatively study the trade claim cases, whereas prior trade claim cases were mainly studied via qualitative methods. Lastly, this study shows that the use of the text mining can lower the barrier for acquiring information from a large amount of digitalized text.

Topic maps Matching and Merging Techniques based on Partitioning of Topics (토픽 분할에 의한 토픽맵 매칭 및 통합 기법)

  • Kim, Jung-Min;Chung, Hyun-Sook
    • The KIPS Transactions:PartD
    • /
    • v.14D no.7
    • /
    • pp.819-828
    • /
    • 2007
  • In this paper, we propose a topic maps matching and merging approach based on the syntactic or semantic characteristics and constraints of the topic maps. Previous schema matching approaches have been developed to enhance effectiveness and generality of matching techniques. However they are inefficient because the approaches should transform input ontologies into graphs and take into account all the nodes and edges of the graphs, which ended up requiring a great amount of processing time. Now, standard languages for developing ontologies are RDF/OWL and Topic Maps. In this paper, we propose an enhanced version of matching and merging technique based on topic partitioning, several matching operations and merging conflict detection.

Research trends in the Korean Journal of Women Health Nursing from 2011 to 2021: a quantitative content analysis

  • Ju-Hee Nho;Sookkyoung Park
    • Women's Health Nursing
    • /
    • v.29 no.2
    • /
    • pp.128-136
    • /
    • 2023
  • Purpose: Topic modeling is a text mining technique that extracts concepts from textual data and uncovers semantic structures and potential knowledge frameworks within context. This study aimed to identify major keywords and network structures for each major topic to discern research trends in women's health nursing published in the Korean Journal of Women Health Nursing (KJWHN) using text network analysis and topic modeling. Methods: The study targeted papers with English abstracts among 373 articles published in KJWHN from January 2011 to December 2021. Text network analysis and topic modeling were employed, and the analysis consisted of five steps: (1) data collection, (2) word extraction and refinement, (3) extraction of keywords and creation of networks, (4) network centrality analysis and key topic selection, and (5) topic modeling. Results: Six major keywords, each corresponding to a topic, were extracted through topic modeling analysis: "gynecologic neoplasms," "menopausal health," "health behavior," "infertility," "women's health in transition," and "nursing education for women." Conclusion: The latent topics from the target studies primarily focused on the health of women across all age groups. Research related to women's health is evolving with changing times and warrants further progress in the future. Future research on women's health nursing should explore various topics that reflect changes in social trends, and research methods should be diversified accordingly.