• 제목/요약/키워드: semantic topic

검색결과 190건 처리시간 0.024초

시맨틱 웹 서비스를 위한 Topic Maps 기반의 온톨로지 언어 (Ontology Language based on Topic Maps for Semantic Web Service)

  • 황윤영;유정연;유소연;이규철
    • 한국전자거래학회:학술대회논문집
    • /
    • 한국전자거래학회 2003년도 종합학술대회 논문집
    • /
    • pp.191-196
    • /
    • 2003
  • The Semantic web service is able to intelligently discover, execute, composite and monitor the Web Service. It constructs the ontology on Web Service and describes the Semantic Markup in the machine-readable form. The currently developing technologies of the Semantic Web Service discovery are DAML-S matchmaker in Carnegie Mellon University, Process Handbook in MIT and etc. In this paper, we propose the ontology language based on Topic Maps that supports the benefits and solves the problems of the Semantic Web Service discovery technologies .

  • PDF

대조주제의 주제성과 초점성 (Topicality and Focality of Contrastive Topic)

  • 위혜경
    • 한국언어정보학회지:언어와정보
    • /
    • 제14권2호
    • /
    • pp.47-70
    • /
    • 2010
  • This study investigates the semantic and prosodic properties of the so-called contrastive topic. We posit two informational primitives, namely, topical feature [+-T] and focal feature [+-F], from which four different informational categories, i.e., [+T, +F], [+T, -F], [-T, +F], and [-T, -F], are yielded. It is proposed that the informational category of contrastive topic has focal property [+F] as well as topical property [+T]. Based on the semantic approach that regards the function of [+F] as identificational predication and that of [+T] as forming a semantic conditional clause, it is shown that the semantic function of contrastive topic, which is specified as [+T, +F], is the combination of these two functions, i.e., identificational predication in a semantic conditional clause. This is supported by a scrutinized exploration of the prosodic pattern of English contrastive topic.

  • PDF

A Semantic Aspect-Based Vector Space Model to Identify the Event Evolution Relationship within Topics

  • Xi, Yaoyi;Li, Bicheng;Liu, Yang
    • Journal of Computing Science and Engineering
    • /
    • 제9권2호
    • /
    • pp.73-82
    • /
    • 2015
  • Understanding how the topic evolves is an important and challenging task. A topic usually consists of multiple related events, and the accurate identification of event evolution relationship plays an important role in topic evolution analysis. Existing research has used the traditional vector space model to represent the event, which cannot be used to accurately compute the semantic similarity between events. This has led to poor performance in identifying event evolution relationship. This paper suggests constructing a semantic aspect-based vector space model to represent the event: First, use hierarchical Dirichlet process to mine the semantic aspects. Then, construct a semantic aspect-based vector space model according to these aspects. Finally, represent each event as a point and measure the semantic relatedness between events in the space. According to our evaluation experiments, the performance of our proposed technique is promising and significantly outperforms the baseline methods.

의미적 의존 링크 토픽 모델을 이용한 생물학 약어 중의성 해소 (Semantic Dependency Link Topic Model for Biomedical Acronym Disambiguation)

  • 김선호;윤준태;서정연
    • 정보과학회 논문지
    • /
    • 제41권9호
    • /
    • pp.652-665
    • /
    • 2014
  • 생물학 도메인은 약어 표현이 빈번하며, 실제로 문서에서 중요한 의미를 지니는 개체명들이 약어로 표현되는 경우가 많다. 본 연구에서는 토픽과 링크 정보를 이용하여 약어 중의성을 해결하고 동일한 의미를 가지는 다양한 형태의 약어 원형들(variant forms)에 대한 그룹핑을 시도한다. 이를 위하여 LDA(latent Dirichlet allocation) 기반 의미적 의존 링크 토픽 모델(semantic dependency topic model)을 제안한다. 해당 모델은 생성 모델(generative model)의 일종으로 문서 집합의 각 문서에 등장하는 단어들은 문서에서 발생하는 토픽 분포와 토픽 당 단어 분포에 의해 생성되어 있는 것으로 가정하고, 관측 가능한 문서 집합의 단어들로부터 문서에 내재된 숨어있는 토픽 구조를 추론하여 단어 생성과 토픽 파라미터를 연결시킨다. 본 연구에서는 토픽 정보 외에 단어들 사이에 존재하는 의미적 의존성(semantic dependency)을 링크로 정의하고, 단어 간에 존재하는 링크 정보, 특히 원형과 문장에서 공기하는 단어들 사이의 링크를 파라미터화하여 중의성 해결에 이용하였다. 결과적으로 주어진 문서에 등장하는 약어에 대해 가장 가능성 있는 원형은 해당 모델을 이용하여 추론된 단어-토픽, 문서-토픽, 단어-링크 확률에 의해서 결정된다. 제안하는 모델은 MEDLINE 초록으로부터 Entrez 인터페이스를 이용해 22개의 약어 집합과 186개의 가능한 약어 원형을 이용하여 질의를 생성하고, 이를 이용해 검색된 문서들을 대상으로 학습과 테스트에 이용하였다. 실험은, 주어진 문서에 등장하는 해당 약어에 대한 원형이 무엇인지 예측하는 방식으로 98.3%의 정확률의 높은 성능을 보였다.

딥러닝을 통한 의미·주제 연관성 기반의 소셜 토픽 추출 시스템 개발 (Development of Extracting System for Meaning·Subject Related Social Topic using Deep Learning)

  • 조은숙;민소연;김세훈;김봉길
    • 디지털산업정보학회논문지
    • /
    • 제14권4호
    • /
    • pp.35-45
    • /
    • 2018
  • Users are sharing many of contents such as text, image, video, and so on in SNS. There are various information as like as personal interesting, opinion, and relationship in social media contents. Therefore, many of recommendation systems or search systems are being developed through analysis of social media contents. In order to extract subject-related topics of social context being collected from social media channels in developing those system, it is necessary to develop ontologies for semantic analysis. However, it is difficult to develop formal ontology because social media contents have the characteristics of non-formal data. Therefore, we develop a social topic system based on semantic and subject correlation. First of all, an extracting system of social topic based on semantic relationship analyzes semantic correlation and then extracts topics expressing semantic information of corresponding social context. Because the possibility of developing formal ontology expressing fully semantic information of various areas is limited, we develop a self-extensible architecture of ontology for semantic correlation. And then, a classifier of social contents and feed back classifies equivalent subject's social contents and feedbacks for extracting social topics according semantic correlation. The result of analyzing social contents and feedbacks extracts subject keyword, and index by measuring the degree of association based on social topic's semantic correlation. Deep Learning is applied into the process of indexing for improving accuracy and performance of mapping analysis of subject's extracting and semantic correlation. We expect that proposed system provides customized contents for users as well as optimized searching results because of analyzing semantic and subject correlation.

Word2Vec를 이용한 토픽모델링의 확장 및 분석사례 (Expansion of Topic Modeling with Word2Vec and Case Analysis)

  • 윤상훈;김근형
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제30권1호
    • /
    • pp.45-64
    • /
    • 2021
  • Purpose The traditional topic modeling technique makes it difficult to distinguish the semantic of topics because the key words assigned to each topic would be also assigned to other topics. This problem could become severe when the number of online reviews are small. In this paper, the extended model of topic modeling technique that can be used for analyzing a small amount of online reviews is proposed. Design/methodology/approach The extended model of being proposed in this paper is a form that combines the traditional topic modeling technique and the Word2Vec technique. The extended model only allocates main words to the extracted topics, but also generates discriminatory words between topics. In particular, Word2vec technique is applied in the process of extracting related words semantically for each discriminatory word. In the extended model, main words and discriminatory words with similar words semantically are used in the process of semantic classification and naming of extracted topics, so that the semantic classification and naming of topics can be more clearly performed. For case study, online reviews related with Udo in Tripadvisor web site were analyzed by applying the traditional topic modeling and the proposed extension model. In the process of semantic classification and naming of the extracted topics, the traditional topic modeling technique and the extended model were compared. Findings Since the extended model is a concept that utilizes additional information in the existing topic modeling information, it can be confirmed that it is more effective than the existing topic modeling in semantic division between topics and the process of assigning topic names.

토픽맵의 다중역할 토픽 보존을 위한 관계형 데이터베이스 구조 (Relational Database Structure for Preserving Multi-role Topics in Topic Map)

  • 정윤수;이춘열;김남규
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제18권3호
    • /
    • pp.327-349
    • /
    • 2009
  • Traditional keyword-based searching methods suffer from low accuracy and high complexity due to the rapid growth in the amount of information. Accordingly, many researchers attempt to implement a so-called semantic search which is based on the semantics of the user's query. Semantic information can be described using a semantic modeling language, such as Topic Map. In this paper, we propose a new method to map a topic map to a traditional Relational Database (RDB) without any information loss. Although there have been a few attempts to map topic maps to RDB, they have paid scant attention to handling multi-role topics. In this paper, we propose a new storage structure to map multi-role topics to traditional RDB. The proposed structure consists of a mapping table, role tables, and content tables. Additionally, we devise a query translator to convert a user's query to one appropriate to the proposed structure.

  • PDF

Research trends in dental hygiene based on topic modeling and semantic network analysis

  • Yun-Jeong Kim;Jae-Hee Roh
    • 한국치위생학회지
    • /
    • 제22권6호
    • /
    • pp.495-502
    • /
    • 2022
  • Objectives: The purpose of this study was to analyze research trends in dental hygiene using topic modeling and semantic network analysis. Methods: A total of 261 published studies were collected 686 key words from the Research Information Sharing Service (RISS) by 2019-2021. Topic modeling and semantic network analysis were performed using Textom. Results: The most frequently and frequency-inverse document frequently key words were 'dental hygienist', 'oral health', 'elderly', 'periodontal disease', 'dental hygiene'. N-gram of key words show that 'dental hygienist-emotional labor', 'dental hygienist-elderly', 'dental hygienist-job performance', 'oral health-quality of life', 'oral health-periodontal disease' etc. were frequently. Key words with high degree centrality were 'dental hygienist (0.317)', 'oral health (0.239)', 'elderly (0.127)', 'job satisfaction (0.057)', 'dental care (0.049)'. Extracted topics were 5 by topic modeling. Conclusions: Results from the current study could be available to know research trends in dental hygiene and it is necessary to improve more detailed and qualitative analysis in follow-up study.

의미망 활동과 수준별 학습을 통한 영어 독해력 향상 방안 (The way to improve EFL reading skill: Focusing on semantic mapping and leveled group activities)

  • 임병빈;장세숙
    • 영어어문교육
    • /
    • 제7권1호
    • /
    • pp.137-160
    • /
    • 2001
  • This paper is to suggest the way to improve EFL reading skill through semantic mapping by leveled group activities. Semantic mapping is a categorical structuring of information in graphic forms or diagrams. It can be used to activate and organize background knowledge on topics in classrooms. For small group activities, the class is divided into higher leveled groups and lower leveled groups of four members based on their grades. The teaching process has three stages: Pre-reading, while-reading, and post-reading. In the pre-reading stage, students discuss what they know about the topic. They map ideas with a brainstorming technique. In the while-reading stage, they read the text about the topic. While they are reading, they could ask some questions they might have and discuss the information in the text and categorize them with semantic mapping. In the post-reading stage, they discuss what they thought of the topic and add some information about the topic with semantic mapping. For the subjects of this study, third grade, middle school students were selected: 41 students for the experimental group and 35 students for the control group. The experimental period covered almost one semester from March to August, 2000. The results were as follows: 1) The students in the experimental group had higher scores in reading comprehension than those in the control group when semantic mapping was used; 2) The use of semantic mapping in reading comprehension was found to be much more effective in the higher leveled group than in the lower leveled group; 3) The results of questionnaires showed that many students became more interested and motivated in English, and semantic mapping helped them to participate positively in reading the English text. Thus, using semantic mapping by leveled group activities can be an effective alternative to traditional teaching methods for teachers who desire to improve reading skill in middle school students' English classes.

  • PDF

비음수 행렬 분해와 K-means를 이용한 주제기반의 다중문서요약 (Topic-based Multi-document Summarization Using Non-negative Matrix Factorization and K-means)

  • 박선;이주홍
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권4호
    • /
    • pp.255-264
    • /
    • 2008
  • 본 논문은 K-means과 비음수 행렬 분해(NMF)를 이용하여 주제기반의 다중문서를 요약하는 새로운 방법을 제안하였다. 제안방법은 비음수 행렬 분해를 이용하여 가중치가 부여된 용어-문장 행렬을 희소(Sparse)한 비음수 의미특징 행렬과 비음수 변수 행렬로 분해함으로써 직관적으로 이해할 수 있는 형태의 의미적 특징을 추출할 수 있고, 주제와 의미특징간의 유사도에 가중치를 부여하여 유사도는 높으나 실제 의미 없는 문장이 추출되는 것을 막는다. 또한 K-means 군집을 이용하여 문장에 포함된 노이즈를 제거함으로써 문서의 의미가 요약에 편향되게 반영하는 것을 피할 수 있고, 추출된 문장에 부여된 순위순서대로 정렬하여 보여 줌으로써 응집성을 높인다. 실험 결과 제안방법이 다른 방법에 비하여 좋은 성능을 보인다.