Journal of Information Technology Applications and Management
/
v.26
no.3
/
pp.43-59
/
2019
The goal of this paper is to investigate changes in North Korea's domestic and foreign policies through automated text analysis over North Korean new year addresses, one of most important and authoritative document publicly announced by North Korean government. Based on that data, we then analyze the status of text mining research, using a text mining technique to find the topics, methods, and trends of text mining research. We also investigate the characteristics and method of analysis of the text mining techniques, confirmed by analysis of the data. We propose a procedure to find meaningful tendencies based on a combination of text mining, cluster analysis, and co-occurrence networks. To demonstrate applicability and effectiveness of the proposed procedure, we analyzed the inaugural addresses of Kim Jung Un of the North Korea from 2017 to 2019. The main results of this study show that trends in the North Korean national policy agenda can be discovered based on clustering and visualization algorithms. We found that uncovered semantic structures of North Korean new year addresses closely follow major changes in North Korean government's positions toward their own people as well as outside audience such as USA and South Korea.
Human-object interaction (HOI) detection is a popular computer vision task that detects interactions between humans and objects. This task can be useful in many applications that require a deeper understanding of semantic scenes. Current HOI detection networks typically consist of a feature extractor followed by detection layers comprising small filters (eg, 1 × 1 or 3 × 3). Although small filters can capture local spatial features with a few parameters, they fail to capture larger context information relevant for recognizing interactions between humans and distant objects owing to their small receptive regions. Hence, we herein propose a three-stream HOI detection network that employs a context convolution module (CCM) in each stream branch. The CCM can capture larger contexts from input feature maps by adopting combinations of large separable convolution layers and residual-based convolution layers without increasing the number of parameters by using fewer large separable filters. We evaluate our HOI detection method using two benchmark datasets, V-COCO and HICO-DET, and demonstrate its state-of-the-art performance.
In this paper, we designed a B-WLL MAC(Media Access Control) protocol and validated its operation for implementation of high-speed subscriber networks. Our MAC protocol was designed by SDL using the DAVIC specifications based upon the variable contention/reserved time slot allocation algorithm. For validation of our MAC protocol, Syntax and semantic error check were performed by the Simulation Builder of ObjectGeode and the MAC(Message Sequence Chart) respectively. The validation results showed that our B-WLL MAC protocol is working correctly and may successfully support B-WLL services.
Purpose One of the reasons for the expansion of information systems in the enterprise is the increased efficiency of data analysis. In particular, the rapidly increasing data types which are complex and unstructured such as video, voice, images, and conversations in and out of social networks. The purpose of this study is the customer needs analysis from customer voices, ie, text data, in the web environment.. Design/methodology/approach As previous study results, the word frequency of the sentence is extracted as a word that interprets the sentence has better affects than frequency analysis. In this study, we applied the TF-IDF method, which extracts important keywords in real sentences, not the TF method, which is a word extraction technique that expresses sentences with simple frequency only, in Korean language research. We visualized the two techniques by cluster analysis and describe the difference. Findings TF technique and TF-IDF technique are applied for Korean natural language processing, the research showed the value from frequency analysis technique to semantic analysis and it is expected to change the technique by Korean language processing researcher.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.11
/
pp.5555-5567
/
2018
State-of-art instance segmentation networks are successful at generating 2D segmentation mask for region proposals with highest classification score, yet 3D object segmentation task is limited to geocentric embedding or detector of Sliding Shapes. To this end, we propose an amodal 3D instance segmentation network called A3IS-CNN, which extends the detector of Deep Sliding Shapes to amodal 3D instance segmentation by adding a new branch of 3D ConvNet called A3IS-branch. The A3IS-branch which takes 3D amodal ROI as input and 3D semantic instances as output is a fully convolution network(FCN) sharing convolutional layers with existing 3d RPN which takes 3D scene as input and 3D amodal proposals as output. For two branches share computation with each other, our 3D instance segmentation network adds only a small overhead of 0.25 fps to Deep Sliding Shapes, trading off accurate detection and point-to-point segmentation of instances. Experiments show that our 3D instance segmentation network achieves at least 10% to 50% improvement over the state-of-art network in running time, and outperforms the state-of-art 3D detectors by at least 16.1 AP.
Building footprint extraction is an active topic in the domain of remote sensing, since buildings are a fundamental unit of urban areas. Deep convolutional neural networks successfully perform footprint extraction from optical satellite images. However, semantic segmentation produces coarse results in the output, such as blurred and rounded boundaries, which are caused by the use of convolutional layers with large receptive fields and pooling layers. The objective of this study is to generate visually enhanced building objects by directly extracting the vertices of individual buildings by combining instance segmentation and keypoint detection. The target keypoints in building extraction are defined as points of interest based on the local image gradient direction, that is, the vertices of a building polygon. The proposed framework follows a two-stage, top-down approach that is divided into object detection and keypoint estimation. Keypoints between instances are distinguished by merging the rough segmentation masks and the local features of regions of interest. A building polygon is created by grouping the predicted keypoints through a simple geometric method. Our model achieved an F1-score of 0.650 with an mIoU of 62.6 for building footprint extraction using the OpenCitesAI dataset. The results demonstrated that the proposed framework using keypoint estimation exhibited better segmentation performance when compared with Mask R-CNN in terms of both qualitative and quantitative results.
Journal of the Korea Fashion and Costume Design Association
/
v.24
no.1
/
pp.83-98
/
2022
This study identified the characteristics of the subculture aspects that led to the success of luxury brands and analyzed the implications of those aspects. For this, semantic analysis in a socio-cultural context was performed. Additionally, this study took the theoretical background, the change in subculture and post-subculture, the digital youth generation, and the change in the meaning of subculture style into consideration. The subculture style aspect and its meaning in luxury fashion brands were analyzed as follows: First, there are challenges that betray the legitimacy or values of luxury brands. Through this, the brand gained recognition and increased sales, and the designer gained a reputation as an innovative creative director. It can be seen that more successful branding was promoted by securing a more subcultured fandom. Second, by combining subculture image fragments, these brands cater to the diverse tastes of a myriad of subcultures. This maximizes commercial profits. Third, most promotional marketing activities are collaborative and done digitally, which allows for a wider customer base, but the difference is in digital capabilities. Limited editions or application use on social networks can act as another driver. It is said that the distinction in high-priced luxury brands is not only driven by economic power but also by sub-cultural capital and digital ability.
Manual inspection of steel box girders on long span bridges is time-consuming and labor-intensive. The quality of inspection relies on the subjective judgements of the inspectors. This study proposes an automated approach to detect and segment cracks in high-resolution images. An end-to-end cascaded framework is proposed to first detect the existence of cracks using a deep convolutional neural network (CNN) and then segment the crack using a modified U-Net encoder-decoder architecture. A Naïve Bayes data fusion scheme is proposed to reduce the false positives and false negatives effectively. To generate the binary crack mask, first, the original images are divided into 448 × 448 overlapping image patches where these image patches are classified as cracks versus non-cracks using a deep CNN. Next, a modified U-Net is trained from scratch using only the crack patches for segmentation. A customized loss function that consists of binary cross entropy loss and the Dice loss is introduced to enhance the segmentation performance. Additionally, a Naïve Bayes fusion strategy is employed to integrate the crack score maps from different overlapping crack patches and to decide whether a pixel is crack or not. Comprehensive experiments have demonstrated that the proposed approach achieves an 81.71% mean intersection over union (mIoU) score across 5 different training/test splits, which is 7.29% higher than the baseline reference implemented with the original U-Net.
Purpose: Topic modeling is a text mining technique that extracts concepts from textual data and uncovers semantic structures and potential knowledge frameworks within context. This study aimed to identify major keywords and network structures for each major topic to discern research trends in women's health nursing published in the Korean Journal of Women Health Nursing (KJWHN) using text network analysis and topic modeling. Methods: The study targeted papers with English abstracts among 373 articles published in KJWHN from January 2011 to December 2021. Text network analysis and topic modeling were employed, and the analysis consisted of five steps: (1) data collection, (2) word extraction and refinement, (3) extraction of keywords and creation of networks, (4) network centrality analysis and key topic selection, and (5) topic modeling. Results: Six major keywords, each corresponding to a topic, were extracted through topic modeling analysis: "gynecologic neoplasms," "menopausal health," "health behavior," "infertility," "women's health in transition," and "nursing education for women." Conclusion: The latent topics from the target studies primarily focused on the health of women across all age groups. Research related to women's health is evolving with changing times and warrants further progress in the future. Future research on women's health nursing should explore various topics that reflect changes in social trends, and research methods should be diversified accordingly.
Proceedings of the Korean Society of Computer Information Conference
/
2023.01a
/
pp.437-438
/
2023
This paper takes the Pingjiang historical and cultural district of Suzhou city as an example, collects 1439 visitor review data from Ctrip.com with the help of Python technology, and uses web text analysis to conduct research on high-frequency words, semantic networks and emotional tendencies to comprehensively assess the tourist perception of the Grand Canal heritage. The study found that: natural and humanistic landscape, historical and cultural accumulation, and the style of Jiangnan Canal are fully reflected in the tourists' perception of Pingjiang historical and cultural district; tourists hold strong positive emotion towards Pingjiang Road, however, there is still more room for renovation and improvement of the historical and cultural district. Finally, countermeasure suggestions for improving the tourist perception of the Grand Canal heritage are given in terms of protection first, cultural integration and innovative utilization.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.