• Title/Summary/Keyword: semantic mining

Search Result 220, Processing Time 0.024 seconds

A Distributed Domain Document Object Management using Semantic Reference Relationship (SRR을 이용한 분산 도메인 문서 객체 관리)

  • Lee, Chong-Deuk
    • Journal of Digital Convergence
    • /
    • v.10 no.5
    • /
    • pp.267-273
    • /
    • 2012
  • The semantic relationship structures hierarchically the huge amount of document objects which is usually not formatted. However, it is very difficult to structure relevant data from various distributed application domains. This paper proposed a new object management method to service the distributed domain objects by using semantic reference relationship. The proposed mechanism utilized the profile structure in order to extract the semantic similarity from application domain objects and utilized the joint matrix to decide the semantic relationship of the extracted objects. This paper performed the simulation to show the performance of the proposed method, and simulation results show that the proposed method has better retrieval performance than the existing text mining method and information extraction method.

Discovering Meaningful Trends in the Inaugural Addresses of North Korean Leader Via Text Mining (텍스트마이닝을 활용한 북한 지도자의 신년사 및 연설문 트렌드 연구)

  • Park, Chul-Soo
    • Journal of Information Technology Applications and Management
    • /
    • v.26 no.3
    • /
    • pp.43-59
    • /
    • 2019
  • The goal of this paper is to investigate changes in North Korea's domestic and foreign policies through automated text analysis over North Korean new year addresses, one of most important and authoritative document publicly announced by North Korean government. Based on that data, we then analyze the status of text mining research, using a text mining technique to find the topics, methods, and trends of text mining research. We also investigate the characteristics and method of analysis of the text mining techniques, confirmed by analysis of the data. We propose a procedure to find meaningful tendencies based on a combination of text mining, cluster analysis, and co-occurrence networks. To demonstrate applicability and effectiveness of the proposed procedure, we analyzed the inaugural addresses of Kim Jung Un of the North Korea from 2017 to 2019. The main results of this study show that trends in the North Korean national policy agenda can be discovered based on clustering and visualization algorithms. We found that uncovered semantic structures of North Korean new year addresses closely follow major changes in North Korean government's positions toward their own people as well as outside audience such as USA and South Korea.

A Study on the Meaning of The First Slam Dunk Based on Text Mining and Semantic Network Analysis

  • Kyung-Won Byun
    • International journal of advanced smart convergence
    • /
    • v.12 no.1
    • /
    • pp.164-172
    • /
    • 2023
  • In this study, we identify the recognition of 'The First Slam Dunk', which is gaining popularity as a sports-based cartoon through big data analysis of social media channels, and provide basic data for the development and development of various contents in the sports industry. Social media channels collected detailed social big data from news provided on Naver and Google sites. Data were collected from January 1, 2023 to February 15, 2023, referring to the release date of 'The First Slam Dunk' in Korea. The collected data were 2,106 Naver news data, and 1,019 Google news data were collected. TF and TF-IDF were analyzed through text mining for these data. Through this, semantic network analysis was conducted for 60 keywords. Big data analysis programs such as Textom and UCINET were used for social big data analysis, and NetDraw was used for visualization. As a result of the study, the keyword with the high frequency in relation to the subject in consideration of TF and TF-IDF appeared 4,079 times as 'The First Slam Dunk' was the keyword with the high frequency among the frequent keywords. Next are 'Slam Dunk', 'Movie', 'Premiere', 'Animation', 'Audience', and 'Box-Office'. Based on these results, 60 high-frequency appearing keywords were extracted. After that, semantic metrics and centrality analysis were conducted. Finally, a total of 6 clusters(competing movie, cartoon, passion, premiere, attention, Box-Office) were formed through CONCOR analysis. Based on this analysis of the semantic network of 'The First Slam Dunk', basic data on the development plan of sports content were provided.

A Tensor Space Model based Semantic Search Technique (텐서공간모델 기반 시멘틱 검색 기법)

  • Hong, Kee-Joo;Kim, Han-Joon;Chang, Jae-Young;Chun, Jong-Hoon
    • The Journal of Society for e-Business Studies
    • /
    • v.21 no.4
    • /
    • pp.1-14
    • /
    • 2016
  • Semantic search is known as a series of activities and techniques to improve the search accuracy by clearly understanding users' search intent without big cognitive efforts. Usually, semantic search engines requires ontology and semantic metadata to analyze user queries. However, building a particular ontology and semantic metadata intended for large amounts of data is a very time-consuming and costly task. This is why commercialization practices of semantic search are insufficient. In order to resolve this problem, we propose a novel semantic search method which takes advantage of our previous semantic tensor space model. Since each term is represented as the 2nd-order 'document-by-concept' tensor (i.e., matrix), and each concept as the 2nd-order 'document-by-term' tensor in the model, our proposed semantic search method does not require to build ontology. Nevertheless, through extensive experiments using the OHSUMED document collection and SCOPUS journal abstract data, we show that our proposed method outperforms the vector space model-based search method.

Do Words in Central Bank Press Releases Affect Thailand's Financial Markets?

  • CHATCHAWAN, Sapphasak
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.4
    • /
    • pp.113-124
    • /
    • 2021
  • The study investigates how financial markets respond to a shock to tone and semantic similarity of the Bank of Thailand press releases. The techniques in natural language processing are employed to quantify the tone and the semantic similarity of 69 press releases from 2010 to 2018. The corpus of the press releases is accessible to the general public. Stock market returns and bond yields are measured by logged return on SET50 and short-term and long-term government bonds, respectively. Data are daily from January 4, 2010, to August 8, 2019. The study uses the Structural Vector Auto Regressive model (SVAR) to analyze the effects of unanticipated and temporary shocks to the tone and the semantic similarity on bond yields and stock market returns. Impulse response functions are also constructed for the analysis. The results show that 1-month, 3-month, 6-month and 1-year bond yields significantly increase in response to a positive shock to the tone of press releases and 1-month, 3-month, 6-month, 1-year and 25-year bond yields significantly increase in response to a positive shock to the semantic similarity. Interestingly, stock market returns obtained from the SET50 index insignificantly respond to the shocks from the tone and the semantic similarity of the press releases.

A Study on Research Trends of Graph-Based Text Representations for Text Mining (텍스트 마이닝을 위한 그래프 기반 텍스트 표현 모델의 연구 동향)

  • Chang, Jae-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.37-47
    • /
    • 2013
  • Text Mining is a research area of retrieving high quality hidden information such as patterns, trends, or distributions through analyzing unformatted text. Basically, since text mining assumes an unstructured text, it needs to be represented as a simple text model for analyzing it. So far, most frequently used model is VSM(Vector Space Model), in which a text is represented as a bag of words. However, recently much researches tried to apply a graph-based text model for representing semantic relationships between words. In this paper, we survey research trends of graph-based text representation models for text mining. Additionally, we also discuss about future models of graph-based text mining.

Towards Improving Causality Mining using BERT with Multi-level Feature Networks

  • Ali, Wajid;Zuo, Wanli;Ali, Rahman;Rahman, Gohar;Zuo, Xianglin;Ullah, Inam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.10
    • /
    • pp.3230-3255
    • /
    • 2022
  • Causality mining in NLP is a significant area of interest, which benefits in many daily life applications, including decision making, business risk management, question answering, future event prediction, scenario generation, and information retrieval. Mining those causalities was a challenging and open problem for the prior non-statistical and statistical techniques using web sources that required hand-crafted linguistics patterns for feature engineering, which were subject to domain knowledge and required much human effort. Those studies overlooked implicit, ambiguous, and heterogeneous causality and focused on explicit causality mining. In contrast to statistical and non-statistical approaches, we present Bidirectional Encoder Representations from Transformers (BERT) integrated with Multi-level Feature Networks (MFN) for causality recognition, called BERT+MFN for causality recognition in noisy and informal web datasets without human-designed features. In our model, MFN consists of a three-column knowledge-oriented network (TC-KN), bi-LSTM, and Relation Network (RN) that mine causality information at the segment level. BERT captures semantic features at the word level. We perform experiments on Alternative Lexicalization (AltLexes) datasets. The experimental outcomes show that our model outperforms baseline causality and text mining techniques.

Analysis Framework using Process Mining for Block Movement Process in Shipyards (조선 산업에서 프로세스 마이닝을 이용한 블록 이동 프로세스 분석 프레임워크 개발)

  • Lee, Dongha;Bae, Hyerim
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.6
    • /
    • pp.577-586
    • /
    • 2013
  • In a shipyard, it is hard to predict block movement due to the uncertainty caused during the long period of shipbuilding operations. For this reason, block movement is rarely scheduled, while main operations such as assembly, outfitting and painting are scheduled properly. Nonetheless, the high operating costs of block movement compel task managers to attempt its management. To resolve this dilemma, this paper proposes a new block movement analysis framework consisting of the following operations: understanding the entire process, log clustering to obtain manageable processes, discovering the process model and detecting exceptional processes. The proposed framework applies fuzzy mining and trace clustering among the process mining technologies to find main process and define process models easily. We also propose additional methodologies including adjustment of the semantic expression level for process instances to obtain an interpretable process model, definition of each cluster's process model, detection of exceptional processes, and others. The effectiveness of the proposed framework was verified in a case study using real-world event logs generated from the Block Process Monitoring System (BPMS).

Graph Compression by Identifying Recurring Subgraphs

  • Ahmed, Muhammad Ejaz;Lee, JeongHoon;Na, Inhyuk;Son, Sam;Han, Wook-Shin
    • Annual Conference of KIPS
    • /
    • 2017.04a
    • /
    • pp.816-819
    • /
    • 2017
  • Current graph mining algorithms suffers from performance issues when querying patterns are in increasingly massive network graphs. However, from our observation most data graphs inherently contains recurring semantic subgraphs/substructures. Most graph mining algorithms treat them as independent subgraphs and perform computations on them redundantly, which result in performance degradation when processing massive graphs. In this paper, we propose an algorithm which exploits these inherent recurring subgraphs/substructures to reduce graph sizes so that redundant computations performed by the traditional graph mining algorithms are reduced. Experimental results show that our graph compression approach achieve up to 69% reduction in graph sizes over the real datasets. Moreover, required time to construct the compressed graphs is also reasonably reduced.

GNI Corpus Version 1.0: Annotated Full-Text Corpus of Genomics & Informatics to Support Biomedical Information Extraction

  • Oh, So-Yeon;Kim, Ji-Hyeon;Kim, Seo-Jin;Nam, Hee-Jo;Park, Hyun-Seok
    • Genomics & Informatics
    • /
    • v.16 no.3
    • /
    • pp.75-77
    • /
    • 2018
  • Genomics & Informatics (NLM title abbreviation: Genomics Inform) is the official journal of the Korea Genome Organization. Text corpus for this journal annotated with various levels of linguistic information would be a valuable resource as the process of information extraction requires syntactic, semantic, and higher levels of natural language processing. In this study, we publish our new corpus called GNI Corpus version 1.0, extracted and annotated from full texts of Genomics & Informatics, with NLTK (Natural Language ToolKit)-based text mining script. The preliminary version of the corpus could be used as a training and testing set of a system that serves a variety of functions for future biomedical text mining.