• Title/Summary/Keyword: semantic content

Search Result 308, Processing Time 0.033 seconds

A Study on Influencer Food-Content Sentiment Keyword Analysis using Semantic Network based on Social Network

  • Ryu, Gi-Hwan;Yu, Chaelin;Lee, Jun Young;Moon, Seok-Jae
    • International journal of advanced smart convergence
    • /
    • v.11 no.2
    • /
    • pp.95-101
    • /
    • 2022
  • The development of the 4th industry has increased social media, and the rise of COVID-19 has stimulated non-face-to-face services. People's consumption patterns are also changing a lot due to non-face-to-face services. In this paper, food content keywords are derived through social network-based semantic network analysis, emotions are analyzed, and keywords applied to food recommendation platforms are input. We collected food, influencer, and corona keyword analysis data through Textom. A lot of research has been done through online reviews of existing influencer content. However, there is a lack of research on keyword sentiment analysis provided by influencers rather than consumers and research perspectives. This paper uploads language and topics derived through online reviews of existing publications and subscribers, and goes beyond the limits used in marketing methods. By analyzing keywords that influencers suggest when uploading content, you can apply data that applies them to food recommendation platforms and applications.

The Need for Paradigm Shift in Semantic Similarity and Semantic Relatedness : From Cognitive Semantics Perspective (의미간의 유사도 연구의 패러다임 변화의 필요성-인지 의미론적 관점에서의 고찰)

  • Choi, Youngseok;Park, Jinsoo
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.111-123
    • /
    • 2013
  • Semantic similarity/relatedness measure between two concepts plays an important role in research on system integration and database integration. Moreover, current research on keyword recommendation or tag clustering strongly depends on this kind of semantic measure. For this reason, many researchers in various fields including computer science and computational linguistics have tried to improve methods to calculating semantic similarity/relatedness measure. This study of similarity between concepts is meant to discover how a computational process can model the action of a human to determine the relationship between two concepts. Most research on calculating semantic similarity usually uses ready-made reference knowledge such as semantic network and dictionary to measure concept similarity. The topological method is used to calculated relatedness or similarity between concepts based on various forms of a semantic network including a hierarchical taxonomy. This approach assumes that the semantic network reflects the human knowledge well. The nodes in a network represent concepts, and way to measure the conceptual similarity between two nodes are also regarded as ways to determine the conceptual similarity of two words(i.e,. two nodes in a network). Topological method can be categorized as node-based or edge-based, which are also called the information content approach and the conceptual distance approach, respectively. The node-based approach is used to calculate similarity between concepts based on how much information the two concepts share in terms of a semantic network or taxonomy while edge-based approach estimates the distance between the nodes that correspond to the concepts being compared. Both of two approaches have assumed that the semantic network is static. That means topological approach has not considered the change of semantic relation between concepts in semantic network. However, as information communication technologies make advantage in sharing knowledge among people, semantic relation between concepts in semantic network may change. To explain the change in semantic relation, we adopt the cognitive semantics. The basic assumption of cognitive semantics is that humans judge the semantic relation based on their cognition and understanding of concepts. This cognition and understanding is called 'World Knowledge.' World knowledge can be categorized as personal knowledge and cultural knowledge. Personal knowledge means the knowledge from personal experience. Everyone can have different Personal Knowledge of same concept. Cultural Knowledge is the knowledge shared by people who are living in the same culture or using the same language. People in the same culture have common understanding of specific concepts. Cultural knowledge can be the starting point of discussion about the change of semantic relation. If the culture shared by people changes for some reasons, the human's cultural knowledge may also change. Today's society and culture are changing at a past face, and the change of cultural knowledge is not negligible issues in the research on semantic relationship between concepts. In this paper, we propose the future directions of research on semantic similarity. In other words, we discuss that how the research on semantic similarity can reflect the change of semantic relation caused by the change of cultural knowledge. We suggest three direction of future research on semantic similarity. First, the research should include the versioning and update methodology for semantic network. Second, semantic network which is dynamically generated can be used for the calculation of semantic similarity between concepts. If the researcher can develop the methodology to extract the semantic network from given knowledge base in real time, this approach can solve many problems related to the change of semantic relation. Third, the statistical approach based on corpus analysis can be an alternative for the method using semantic network. We believe that these proposed research direction can be the milestone of the research on semantic relation.

A Semantic-based Video Retrieval System using Method of Automatic Annotation Update and Multi-Partition Color Histogram (자동 주석 갱신 및 멀티 분할 색상 히스토그램 기법을 이용한 의미기반 비디오 검색 시스템)

  • 이광형;전문석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8C
    • /
    • pp.1133-1141
    • /
    • 2004
  • In order to process video data effectively, it is required that the content information of video data is loaded in database and semantic-based retrieval method can be available for various query of users. In this paper, we propose semantic-based video retrieval system which support semantic retrieval of various users by feature-based retrieval and annotation-based retrieval of massive video data. By user's fundamental query and selection of image for key frame that extracted from query, the agent gives the detail shape for annotation of extracted key frame. Also, key frame selected by user become query image and searches the most similar key frame through feature based retrieval method that propose. From experiment, the designed and implemented system showed high precision ratio in performance assessment more than 90 percents.

Development of Intelligent Agent Systems based on Semantic Web for e-Learning (e-러닝을 위한 시멘틱웹 기반 지능형 에이전트 시스템 개발)

  • Han, Sun-Gwan
    • The Journal of Korean Association of Computer Education
    • /
    • v.9 no.3
    • /
    • pp.121-128
    • /
    • 2006
  • This study suggested the new e-learning systems based on agent to provide an adaptable learning. In Semantic Web environment, to develop an ontology and an intelligent agent is essential for an adaptable e-learning systems. Especially, to develop a reasoning engine using analysis of learning content and learners' information can offer an effective e-learning system. Therefore, we developed an applying model to an adaptable e-learning systems and the various ontologies for Semantic Web environment. Moreover, we analyzed and developed ontologies within the framework of learning domain, a learner and interface. Further, we implemented an intelligent e-learning for applying an agent's reasoning. Through this system proposed, we suggested the new e-learning systems model for Semantic Web environment.

  • PDF

Modern Linguistics: Theoretical Aspects of the Development of Cognitive Semantics

  • Nataliia Mushyrovska;Liudmyla Yursa;Oksana Neher;Iryna Pavliuk
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.162-168
    • /
    • 2023
  • This article presents an examination of the major cognitive-semantic theories in linguistics (Langacker, Lakoff, Fillmore, Croft). The CST's foundations are discussed concerning the educational policy changes, which are necessary to improve the linguistic disciplines in the changing context of higher education, as well as the empowerment and development of the industry. It is relevant in the light of the linguistic specialists' quality training and the development of effective methods of language learning. Consideration of the theories content, tools, and methods of language teaching, which are an important component of quality teaching and the formation of a set of knowledge and skills of students of linguistic specialties, remains crucial. This study aims to establish the main theoretical positions and directions of cognitive-semantic theory in linguistics, determine the usefulness of teaching the basics of cognitive linguistics, the feasibility of using methods of cognitive-semantic nature in the learning process. During the research, the methods of linguistic description and observation, analysis, and synthesis were applied. The result of the study is to establish the need to study basic linguistic theories, as well as general theoretical precepts of cognitive linguistics, which remains one of the effective directions in the postmodern mainstream. It also clarifies the place of the main cognitive-semantic theories in the teaching linguistics' practice of the XXI century.

Interactive Semantic Image Retrieval

  • Patil, Pushpa B.;Kokare, Manesh B.
    • Journal of Information Processing Systems
    • /
    • v.9 no.3
    • /
    • pp.349-364
    • /
    • 2013
  • The big challenge in current content-based image retrieval systems is to reduce the semantic gap between the low level-features and high-level concepts. In this paper, we have proposed a novel framework for efficient image retrieval to improve the retrieval results significantly as a means to addressing this problem. In our proposed method, we first extracted a strong set of image features by using the dual-tree rotated complex wavelet filters (DT-RCWF) and dual tree-complex wavelet transform (DT-CWT) jointly, which obtains features in 12 different directions. Second, we presented a relevance feedback (RF) framework for efficient image retrieval by employing a support vector machine (SVM), which learns the semantic relationship among images using the knowledge, based on the user interaction. Extensive experiments show that there is a significant improvement in retrieval performance with the proposed method using SVMRF compared with the retrieval performance without RF. The proposed method improves retrieval performance from 78.5% to 92.29% on the texture database in terms of retrieval accuracy and from 57.20% to 94.2% on the Corel image database, in terms of precision in a much lower number of iterations.

Personalized Book Recommendation System based on Semantic Web (시맨틱웹 기반 개인 맞춤형 도서 추천 시스템)

  • Kim, Jin-Chun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.5
    • /
    • pp.1097-1104
    • /
    • 2011
  • In this paper, we propose a semantic web approach for personalized book recommendation. Our approach takes advantage of the content-based recommendation and improves its disadvantage that users should input their interesting fields into all book search systems they use. Our approach provides the sharing of users' profile with their interesting fields by enabling user's interesting fields to be described over each book classification ontology of various book information providers. We also provide a middleware that manages users' profiles written in RDF and analizes similarity between user's interesting field and each concept over the book classification ontology. Our approach provide better performance than traditional keyword-based search by sharing the user's profile among book recommendation systems.

Sentiment Analysis of User-Generated Content on Drug Review Websites

  • Na, Jin-Cheon;Kyaing, Wai Yan Min
    • Journal of Information Science Theory and Practice
    • /
    • v.3 no.1
    • /
    • pp.6-23
    • /
    • 2015
  • This study develops an effective method for sentiment analysis of user-generated content on drug review websites, which has not been investigated extensively compared to other general domains, such as product reviews. A clause-level sentiment analysis algorithm is developed since each sentence can contain multiple clauses discussing multiple aspects of a drug. The method adopts a pure linguistic approach of computing the sentiment orientation (positive, negative, or neutral) of a clause from the prior sentiment scores assigned to words, taking into consideration the grammatical relations and semantic annotation (such as disorder terms) of words in the clause. Experiment results with 2,700 clauses show the effectiveness of the proposed approach, and it performed significantly better than the baseline approaches using a machine learning approach. Various challenging issues were identified and discussed through error analysis. The application of the proposed sentiment analysis approach will be useful not only for patients, but also for drug makers and clinicians to obtain valuable summaries of public opinion. Since sentiment analysis is domain specific, domain knowledge in drug reviews is incorporated into the sentiment analysis algorithm to provide more accurate analysis. In particular, MetaMap is used to map various health and medical terms (such as disease and drug names) to semantic types in the Unified Medical Language System (UMLS) Semantic Network.

When Ontology meets e-Catalog.

  • Lee, Hyun-Ja;Shim, Jun-Ho
    • Proceedings of the CALSEC Conference
    • /
    • 2004.02a
    • /
    • pp.287-293
    • /
    • 2004
  • ■ Sounds the title intriguing to you, but suspicious about the content of our talk ? · Title : When Ontology meets e-Catalog. ·Hot subjects : ·Terms (or topics) such as ontology, Sermantic Web. and e-Catalogs have been on many people's lips recently. ·However, we claim that the outcomes or contents of the majority of talks or workshops have touched the surface of the subjects. For examples. -Good for having Ontology... -Go for Semantic Web... -Probably Semantic Web being feasible for e-Commerce....(omitted)

  • PDF

Video Event Detection according to Generating of Semantic Unit based on Moving Object (객체 움직임의 의미적 단위 생성을 통한 비디오 이벤트 검출)

  • Shin, Ju-Hyun;Baek, Sun-Kyoung;Kim, Pan-Koo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.2
    • /
    • pp.143-152
    • /
    • 2008
  • Nowadays, many investigators are studying various methodologies concerning event expression for semantic retrieval of video data. However, most of the parts are still using annotation based retrieval that is defined into annotation of each data and content based retrieval using low-level features. So, we propose a method of creation of the motion unit and extracting event through the unit for the more semantic retrieval than existing methods. First, we classify motions by event unit. Second, we define semantic unit about classified motion of object. For using these to event extraction, we create rules that are able to match the low-level features, from which we are able to retrieve semantic event as a unit of video shot. For the evaluation of availability, we execute an experiment of extraction of semantic event in video image and get approximately 80% precision rate.

  • PDF