• Title/Summary/Keyword: self-tuning fuzzy control

Search Result 125, Processing Time 0.027 seconds

A study on The Fuzzy PID Controller for an gain self-tuning (이득동조를 위한 퍼지 PID 제어기의 연구)

  • 유상욱
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.3
    • /
    • pp.60-65
    • /
    • 2000
  • We propose a new method to deal with the optimal gain self-tuning of the PID controller which is used to industrial process control in various fields. First of all, in this method, first order delay system which was modeled from the unit step response of the system is Pade-approximated, then initial values are determined by the Ziegler-Nickels method. Finally, we can find the parameters of Pm controller so as to maximize the fuzzy inferencl function which includes the maximum overshoot, damping ratio, rising time and settling time. The proposed method also shows good adaptability for variations in characteristics and dead time of the system.

  • PDF

A Study on the High Performance Speed Control of Induction Motor Using Self-Learning Fuzzy Controller (자기학습형 퍼지제어기에 의한 유도전동기 고성능 속도제어에 관한 연구)

  • Park, Y.M.;Kim, Y.C.;Kim, J.M.;Won, C.Y.;Kim, Y.R.;Kim, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.505-508
    • /
    • 1997
  • In this paper, an auto-tuning method for fuzzy controller based on the neural network is presented. The backpropagated error of neural emulator offers the path which reforms the fuzzy controller's membership functions and fuzzy rule, and used for speed control of induction motor. For the torque control method, an indirect vector control scheme with slip calculation is used because of its stable characteristics regardless of speed. Motor input current is regulated by a current controlled voltage source PWM inverter using space voltage vector technique. Also, the scheme of current control fuzzy controller is synchronous reference frame with decoupling term. DSP(TMS320C31) is used to achieve the high speed calculation of the space voltage vector PWM and to build the self-learning fuzz. control algorithm. An IPM is used to simplify hardware design.

  • PDF

Contour Control of X-Y Tables Using Nonlinear Fuzzy PD Controller (비선형 퍼지 PD 제어기를 이용한 X-Y 테이블의 경로제어)

  • Chai, Chang-Hyun;Suk, Hong-Seong;Kim, Hee-Nyon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2849-2852
    • /
    • 1999
  • This paper describes the fuzzy PD controller using simplified indirect inference method. First, the fuzzy PD controller is derived from the conventional continuous time linear PD controller. Then the fuzzification, control-rule base, and defuzzification using SIIM in the design of the fuzzy controller are discussed in detail. The resulting controller is a discrete time fuzzy version of the conventional PD controller. which has the same linear structure. but are nonlinear functions of the input signals. The proposed controller enhances the self-tuning control capability. particularly when the process to be controlled is nonlinear. As the SIIM is applied, the fuzzy Inference results can be calculated with splitting fuzzy variables into each action component and are determined as the functional form of corresponding variables. So the Proposed method has the capability of the high speed inference and extending the fuzzy input variables easily. Computer simulation results have demonstrated the superior to the control Performance of the one Proposed by D. Misir et at. Final)y. we simulated the contour control of the X-Y tables with direct control strategies using the proposed fuzzy PD controller.

  • PDF

Design of Sophisticated Self-Tuning Fuzzy Logic Controllers Using Genetic Algorithms (유전알고리즘을 이용한 정교한 자기동조 퍼지 제어기의 설계)

  • Hwang, Yon-Won;Kim, Lark-Kyo;Nam, Moon-Hyon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.509-511
    • /
    • 1998
  • Design of fuzzy logic controllers encounters difficulties in the selection of optimized membership function and fuzzy rule base, which is traditionally achieved by tedious trial-and-error process. In this paper We proposed a new method to generate fuzzy logic controllers throught genetic algorithm(GA). The controller design space is coded in base-7 strings chromosomes, where each bit gene matches the 7 discrete fuzzy value. The developed approach is subsequently applied to the design of proportional plus integral type fuzzy controller for a do-servo motor control system. It was presented in discrete fuzzy linguistic value, and used a membership function with Gaussian curve. The performance of this control system is demonstrated higher than that of a conventional PID controller and fuzzy logic controller(FLC).

  • PDF

Design of fuzzy digital PI+D controller using simplified indirect inference method (간편 간접추론방법을 이용한 퍼지 디지털 PI+D 제어기의 설계)

  • Chai, Chang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.35-41
    • /
    • 2000
  • This paper describes the design of fuzzy digital PID controller using a simplified indirect inference method. First, the fuzzy digital PID controller is derived from the conventional continuous-time linear digital PID controller,. Then the fuzzification, control-rule base, and defuzzification using SIM in the design of the fuzzy controller are discussed in detail. The resulting controller is a discrete-time fuzzy version of the conventional PID controller, which has the same linear structure, but are nonlinear functions of the input signals. The proposed controller enhances the self-tuning control capability, particularly when the process to be controlled is nonlinear. When the SIIM is applied the fuzzy inference results can be calculated with splitting fuzzy variables into each action component and are determined as the functional form of corresponding variables. So the proposed method has the capability of the high speed inference and adapting with increasing the number of the fuzzy input variables easily. Computer simulation results have demonstrated that the proposed method provides better control performance than the one proposed by D. Misir et al.

  • PDF

Current Control of the Forklift using a Fuzzy Controller

  • Bae, Jong-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2552-2556
    • /
    • 2005
  • In general, the forklift driven by DC motor drive system is used in the industrial field. Classically, the DC motor is controlled by current control using proportion control method, by output torque following the load on the plane like a manual operation. But in the industrial field, the forklift is demanded the robust drive mode. Some cases of the mode, there aretrouble in torque control following slope capacity. The control is sensitive concerning about slope angle and output speed, various control method is studied for stability of speed control. In this paper, I apply current control for the self-tuning using the fuzzy controller to obtain robust, stable speed control and use stable, high efficiency control using DSP as main controller for high speed processor, embody dynamic characteristic of control compared the PI controller to the fuzzy controller.

  • PDF

Fuzzy-Sliding Mode Control of Polishing Robot Based on Genetic Algorithm

  • Go, Seok-Jo;Lee, Min-Cheol;Park, Min-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.173-176
    • /
    • 1999
  • This paper shows a self tuning fuzzy inference method by the genetic algorithm in the fuzzy-sliding mode control for a Polishing robot. Using this method, the number of inference rules and the shape of membership functions are determined by the genetic algorithm. The fuzzy outputs of the consequent part are derived by the gradient descent method. Also, it is guaranteed that .the selected solution become the global optimal solution by optimizing the Akaike's information criterion expressing the quality of the inference rules. It is shown by simulations that the method of fuzzy inference by the genetic algorithm provides better learning capability than the trial and error method.

  • PDF

Design of Nonlinear Fuzzy I+PD Controller Using Simplified Indirect Inference Method (간편간접추론방법을 이용한 비선형 퍼지 I+PD 제어기의 설계)

  • Chai, Chang-Hyun;Chae, Seok;Park, Jae-Wan;Yoon, Myong-Kee
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2898-2901
    • /
    • 1999
  • This paper describes the design of nonlinear fuzzy I+PD controller using simplified indirect inference method. First, the fuzzy I+PD controller is derived from the conventional continuous time linear I+PD controller. Then the fuzzification, control-rule base, and defuzzification using SIIM in the design of the fuzzy controller are discussed in detail. The resulting controller is a discrete time fuzzy version of the conventional I+PD controller. which has the same linear structure. but are nonlinear functions of the input signals. The proposed controller enhances the self-tuning control capability. Particularly when the process to be controlled is nonlinear When the SIIM is applied, the fuzzy inference results can be calculated with splitting fuzzy variables into each action component and are determined as the functional form of corresponding variables. So the proposed method has the capability of the high speed inference and adapting with increasing the number of the fuzzy input variables easily. Computer simulation results have demonstrated the superior to the control performance of the one Proposed by D. Misir et at.

  • PDF

Design of Nonlinear Fuzzy PI+D Controller Using Simplified Indirect Inference Method (간편 간접추론방법을 이용한 비선형 퍼지 PI+D 제어기의 설계)

  • Chai, Chang-Hyun;Lee, Sang-Tae;Ryu, Chang-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2839-2842
    • /
    • 1999
  • This paper describes the design of fuzzy PID controller using simplified indirect inference method. First, the fuzzy PID controller is derived from the conventional continuous time linear PID controller. Then the fuzzification, control-rule base, and defuzzification using SIIM in the design of the fuzzy controller are discussed in detail. The resulting controller is a discrete time fuzzy version of the conventional PID controller, which has the same linear structure. but are nonlinear functions of the input signals. The proposed controller enhances the self-tuning control capability, particularly when the process to be controlled is nonlinear. When the SIIM is applied, the fuzzy inference results can be calculated with splitting fuzzy variables into each action component and are determined as the functional form of corresponding variables. So the proposed method has the capability of the high speed inference and adapting with increasing the number of the fuzzy input variables easily. Computer simulation results have demonstrated the superior to the control performance of the one proposed by D. Misir et al.

  • PDF

Speed Control of BLDC Motor Drive Using an Adaptive Fuzzy P+ID Controller (적응 퍼지 P+ID 제어기를 이용한 BLDC 전동기의 속도제어)

  • Kwon, Chung-Jin;Han, Woo-Yang;Sin, Dong-Yang;Kim, Sung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1172-1174
    • /
    • 2002
  • An adaptive fuzzy P + ID controller for variable speed operation of BLDC motor drives is presented in this paper. Generally, a conventional PID controller is most widely used in industry due to its simple control structure and ease of design. However, the PID controller suffers from the electrical machine parameter variations and disturbances. To improve the tracking performance for parameter and load variations, the controller proposed in this paper is constructed by using an adaptive fuzzy logic controller in place of the proportional term in a conventional PID controller. For implementing this controller, only one additional parameter has to be adjusted in comparison with the PID controller. An adaptive fuzzy controller applied to proportional term to achieve robustness against parameter variations has simple structure and computational simplicity. The controller based on optimal fuzzy logic controller has an self-tuning characteristics with clustering. Computer simulation results show the usefulness of the proposed controller.

  • PDF