• Title/Summary/Keyword: self-sensing

Search Result 330, Processing Time 0.024 seconds

Robust Control Simulation of a Composite Beam using Self-Sensing Actuators (Self-Sensing 작동기를 이용한 복합재 보의 강인제어 시뮬레이션)

  • 권대규;최병용;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.284-287
    • /
    • 2001
  • This paper presents the robust control simulation of a composite beam using self-sensing actuators(SSA). The self-sensing actuator is a new concept for intelligent material, where a single piezoelectric element simultaneously functions as both a sensor and an actuator. In a practical implementation of the self-sensing actuator an electrical bridge circuit is used to measure strain. The circuit could provide significant information about strain in the element if it were well-balanced. Our aim is design a robust controller which guarantees that the performance of a self-sensing actuator is robust against perturbation of the bridge balance and to confirm the advantages of this technique. Simulation results show that the self-sensing actuator driven by the designed controller exhibits excellent performance in suppressing the vibration of a composite beam.

  • PDF

Self-sensing measurement of piezo inkjet and its Applications (피에조 잉크젯의 셀프 센싱 검출 및 응용)

  • Kwon, Kye-Si;Kim, Wou-Sik;Kim, Sang-Il;Shin, Seung-Joo;Kim, Seong-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.366-372
    • /
    • 2007
  • Self-sensing measurement of piezo inkjet and its application are discussed. The pressure wave inside the inkjet dispenser was measured by current measurement due to self-sensing capability of PZT. The pressure wave measured from current was verified by commercially available laser vibrometer. Here, two applications using self-sensing signal were discussed: waveform design for high speed jetting and condition monitoring. For waveform design, two pulse waveform was designed based on self-sensing signal such that the pressure wave after droplet formation can be minimized. For condition monitoring, self-sensing signal was shown to be effective in detecting air bubble trapped in inkjet printhead.

  • PDF

Characterization and modeling of a self-sensing MR damper under harmonic loading

  • Chen, Z.H.;Ni, Y.Q.;Or, S.W.
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1103-1120
    • /
    • 2015
  • A self-sensing magnetorheological (MR) damper with embedded piezoelectric force sensor has recently been devised to facilitate real-time close-looped control of structural vibration in a simple and reliable manner. The development and characterization of the self-sensing MR damper are presented based on experimental work, which demonstrates its reliable force sensing and controllable damping capabilities. With the use of experimental data acquired under harmonic loading, a nonparametric dynamic model is formulated to portray the nonlinear behaviors of the self-sensing MR damper based on NARX modeling and neural network techniques. The Bayesian regularization is adopted in the network training procedure to eschew overfitting problem and enhance generalization. Verification results indicate that the developed NARX network model accurately describes the forward dynamics of the self-sensing MR damper and has superior prediction performance and generalization capability over a Bouc-Wen parametric model.

Self-Sensing Composites and Optimization of Composite Structures in Japan

  • Todoroki, Akira
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.3
    • /
    • pp.155-166
    • /
    • 2010
  • I review research on self-sensing and structural optimizations of laminated carbon/epoxy composites in Japan. Self-sensing is one of the multiple functions of composites; i.e., carbon fiber is used as a sensor as well as reinforcement. I present a controversial issue in self-sensing and detail research results. Structural optimization of laminated CFRP composites is indispensable in reducing the weights of modern aerospace structural components. I present a modified efficient global search method using the multi-objective genetic algorithm and fractal branch and bound method. My group has focused its research on these subjects and our research results are presented here.

Mechanical and Electrical Characteristics of Concrete Members Enlarged with Self-Sensing Cementitious Materials for Repair (자기감지형 보수재로 단면증타된 콘크리트 부재의 역학 및 전기적 특성 )

  • Gun-Cheol Lee;Geon-Woo Im;Chang-Min Lee;Sung-Won Hong;Young-Min Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.139-146
    • /
    • 2023
  • In this study, compressive strength and adhesion strength were measured as repair materials to evaluate the mechanical and electrical properties of compression and shear specimens with self-sensing repair materials. As a result of the experiment, the strength improvement rate of the compression test specimen was higher than the section enlargement area ratio, but the shear test specimen did not show an improvement in strength as much as the section enlargement area ratio. Compression experiments under load showed high correlation between FCR-Strain and FCR-Stress, confirming self-sensing performance. However, the shear test did not show as much correlation as the compression test. Accordingly, it is judged that the self-sensing repair material is suitable for the compression member on which the compression load acts in the building.

Strategy for Enhancing Functional Density of Stretchable Electronics by Self-Sensing Interconnects

  • Dongwuk Jung;Hunpyo Ju
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.5
    • /
    • pp.344-352
    • /
    • 2024
  • Stretchable electronics are emerging as next-generation devices owing to their unique deformable characteristics, which allow their application on nonplanar and even deformable surfaces. However, to implement advanced functions in stretchable electronics, conventional rigid components must be integrated to reduce the overall stretchability of these systems. Various design strategies have been proposed to address this challenge. One notable approach involves dividing the electronics into nonstretchable regions for component integration and stretchable interconnector regions that absorb strain. However, stretchable interconnectors, which electrically connect nonstretchable circuits, may reduce the functional density of electronics. In this study, we present a design strategy for self-sensing stretchable electronics by embedding strain sensors within stretchable interconnectors. We provide both computational and experimental evidence demonstrating the advantages of this approach and validate the feasibility of the design by developing a stretchable light-emitting diode (LED) matrix with self-sensing capabilities for measuring the stretching ratio. The results presented herein offer valuable strategies for advancing applications that require stretchable electronics with high functional densities. Moreover, the self-sensing design approach has significant potential for application in proprioceptive electronics.

Residual Vibration Suppression of a Piezoelectric Beam Using a Self-sensing Technology (자기계측 기능을 이용한 압전 빔의 잔류진동 제어)

  • Nam, Yoon-Su;Jang, Hu-Yeong;Park, Jong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.3 s.192
    • /
    • pp.67-75
    • /
    • 2007
  • This paper deals with a problem of vibration suppression of a piezoelectric beam using a self-sensing algorithm. Two methods, which are PPF(positive position feedback) and SRF(strain rate feedback), are considered to suppress a residual vibration of a piezoelectric beam developed during the step positioning of a beam end point. A self-sensing algorithm treated here is basically a strain rate estimator of a beam movement and is to be used for the closed loop control. The efficacy of the proposed idea is evaluated through experiments.

Design of Surface Permanent Magnet Synchronous Machine with Magnetic Saliency for Self-Sensing Position Estimation (회전자 위치추정을 위해 자기적 돌극성을 고려한 표면 부착형 영구자석 동기 전동기 설계)

  • Cho, Jeonghyun;Lee, Cheewoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.765-771
    • /
    • 2017
  • This paper presents concurrent design methods of surface permanent magnet synchronous machines for saliency-tracking self-sensing position estimation. Magnetic saliency for the self-sensing is created by stator pole saturation due to the rotor zigzag leakage flux. The power conversion properties such as saliency ratio, torque ripple, and efficiency vary according to motor design. The property change due to design modification is analysed by using finite element analysis, and with the appropriate design modification, proper saliency is created while preserving their power conversion capabilities.

Strain Rate Self-Sensing for a Cantilevered Piezoelectric Beam

  • Nam, Yoonsu;Sasaki, Minoru
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.310-319
    • /
    • 2002
  • This paper deals with the analytical modeling, and the experimental verification of the strain rate self-sensing method using a hybrid adaptive filter for a cantilevered piezoelectric beam. The piezoelectric beam consists of two laminated lead zirconium titanates (PZT) on a metal shim. A mathematical model of the beam dynamics is derived by Hamilton's principle and the accuracy of the modeling is verified through the comparison with experimental results. For the strain rate estimation of the cantilevered piezoelectric beam, a self-sensing mechanism using a hybrid adaptive filter is considered. The discrete parts of this mechanism are realized by the DS1103 DSP board manufactured by dSPACE$\^$TM/. The efficacy of this method is investigated through the comparison of experimental results with the predictions from the derived analytical model.

Self-Sensing Magnetic Suspension System using an LC Resonant Circuit with a Positive Position Feedback Controller (LC공진 회로와 PPF제어기를 이용한 자체 측정식 자기 서스펜션 시스템)

  • 최창환;박기환
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.787-793
    • /
    • 1999
  • A self-sensing magnetic suspension system utilizing a LC resonant circuit is proposed by using the characteristic that the inductance of the magnetic system is varied with respect to the air gap displacement. An external capacitor is added into the electric system to make the levitation system be statically stable system, which much relieves the control effort required to stabilize the magnetic suspension system of haying an intrinsic unstable nature. For the realization of the self- sensing magnetically levitated system, an amplitude modulation / demodulation method is used with a positive position feedback controller Experimental results are presented to validate the proposed method.

  • PDF