• Title/Summary/Keyword: self-orgnizing map

Search Result 3, Processing Time 0.017 seconds

3D Object Recognition Using SOFM (3D Object Recognition Using SOFM)

  • Cho, Hyun-Chul;Shon, Ho-Woong
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.2
    • /
    • pp.99-103
    • /
    • 2006
  • 3D object recognition independent of translation and rotation using an ultrasonic sensor array, invariant moment vectors and SOFM(Self Organizing Feature Map) neural networks is presented. Using invariant moment vectors of the acquired 16×8 pixel data of square, rectangular, cylindric and regular triangular blocks, 3D objects could be classified by SOFM neural networks. Invariant moment vectors are constant independent of translation and rotation. The recognition rates for the training and testing data were 95.91% and 92.13%, respectively.

  • PDF

A study on inspection area using neural network for vision systems (비젼 시스템에서 신경 회로망을 이용한 검사 영역에 관한 연구)

  • Oh, Je-Hui;Cha, Young-Youp
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.378-383
    • /
    • 1998
  • A FOV, that stands for "Field Of View", refers to the maximum area where a camera could be wholly seen. If a FOV of CCD camera cannot the cover overall inspection area, the overall inspection area should be divided into sub-areas of size FOV. In this paper, we propose a new neural network-based FOV generation method by using a newly modified self-organizing map(SOM) which has multiple structure based on a self-organizing map, and uses new training rule that is composed of the movement, creation and deletion terms. Then, experiment results using real PCB indicate the superiority of the method developed in this study to the existing sequential method.al method.

  • PDF

Optimization of Structure-Adaptive Self-Organizing Map Using Genetic Algorithm (유전자 알고리즘을 사용한 구조적응 자기구성 지도의 최적화)

  • 김현돈;조성배
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.223-230
    • /
    • 2001
  • Since self-organizing map (SOM) preserves the topology of ordering in input spaces and trains itself by unsupervised algorithm, it is Llsed in many areas. However, SOM has a shortcoming: structure cannot be easily detcrmined without many trials-and-errors. Structure-adaptive self-orgnizing map (SASOM) which can adapt its structure as well as its weights overcome the shortcoming of self-organizing map: SASOM makes use of structure adaptation capability to place the nodes of prototype vectors into the pattern space accurately so as to make the decision boundmies as close to the class boundaries as possible. In this scheme, the initialization of weights of newly adapted nodes is important. This paper proposes a method which optimizes SASOM with genetic algorithm (GA) to determines the weight vector of newly split node. The leanling algorithm is a hybrid of unsupervised learning method and supervised learning method using LVQ algorithm. This proposed method not only shows higher performance than SASOM in terms of recognition rate and variation, but also preserves the topological order of input patterns well. Experiments with 2D pattern space data and handwritten digit database show that the proposed method is promising.

  • PDF