• 제목/요약/키워드: self-organizing neural network

검색결과 222건 처리시간 0.029초

Color Image Vector Quantization Using Enhanced SOM Algorithm

  • Kim, Kwang-Baek
    • 한국멀티미디어학회논문지
    • /
    • 제7권12호
    • /
    • pp.1737-1744
    • /
    • 2004
  • In the compression methods widely used today, the image compression by VQ is the most popular and shows a good data compression ratio. Almost all the methods by VQ use the LBG algorithm that reads the entire image several times and moves code vectors into optimal position in each step. This complexity of algorithm requires considerable amount of time to execute. To overcome this time consuming constraint, we propose an enhanced self-organizing neural network for color images. VQ is an image coding technique that shows high data compression ratio. In this study, we improved the competitive learning method by employing three methods for the generation of codebook. The results demonstrated that compression ratio by the proposed method was improved to a greater degree compared to the SOM in neural networks.

  • PDF

GA-based Feed-forward Self-organizing Neural Network Architecture and Its Applications for Multi-variable Nonlinear Process Systems

  • Oh, Sung-Kwun;Park, Ho-Sung;Jeong, Chang-Won;Joo, Su-Chong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제3권3호
    • /
    • pp.309-330
    • /
    • 2009
  • In this paper, we introduce the architecture of Genetic Algorithm(GA) based Feed-forward Polynomial Neural Networks(PNNs) and discuss a comprehensive design methodology. A conventional PNN consists of Polynomial Neurons, or nodes, located in several layers through a network growth process. In order to generate structurally optimized PNNs, a GA-based design procedure for each layer of the PNN leads to the selection of preferred nodes(PNs) with optimal parameters available within the PNN. To evaluate the performance of the GA-based PNN, experiments are done on a model by applying Medical Imaging System(MIS) data to a multi-variable software process. A comparative analysis shows that the proposed GA-based PNN is modeled with higher accuracy and more superb predictive capability than previously presented intelligent models.

입자화 중심 자기구성 다항식 신경 회로망의 새로운 설계 (A new Design of Granular-oriented Self-organizing Polynomial Neural Networks)

  • 오성권;박호성
    • 전기학회논문지
    • /
    • 제61권2호
    • /
    • pp.312-320
    • /
    • 2012
  • In this study, we introduce a new design methodology of a granular-oriented self-organizing polynomial neural networks (GoSOPNNs) that is based on multi-layer perceptron with Context-based Polynomial Neurons (CPNs) or Polynomial Neurons (PNs). In contrast to the typical architectures encountered in polynomial neural networks (PNN), our main objective is to develop a methodological design strategy of GoSOPNNs as follows : (a) The 1st layer of the proposed network consists of Context-based Polynomial Neuron (CPN). In here, CPN is fully reflective of the structure encountered in numeric data which are granulated with the aid of Context-based Fuzzy C-Means (C-FCM) clustering method. The context-based clustering supporting the design of information granules is completed in the space of the input data while the build of the clusters is guided by a collection of some predefined fuzzy sets (so-called contexts) defined in the output space. (b) The proposed design procedure being applied at each layer of GoSOPNN leads to the selection of preferred nodes of the network (CPNs or PNs) whose local characteristics (such as the number of contexts, the number of clusters, a collection of the specific subset of input variables, and the order of the polynomial) can be easily adjusted. These options contribute to the flexibility as well as simplicity and compactness of the resulting architecture of the network. For the evaluation of performance of the proposed GoSOPNN network, we describe a detailed characteristic of the proposed model using a well-known learning machine data(Automobile Miles Per Gallon Data, Boston Housing Data, Medical Image System Data).

진화론적 최적 자기구성 다항식 뉴럴 네트워크 (Genetically Optimized Self-Organizing Polynomial Neural Networks)

  • 박호성;박병준;장성환;오성권
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권1호
    • /
    • pp.40-49
    • /
    • 2004
  • In this paper, we propose a new architecture of Genetic Algorithms(GAs)-based Self-Organizing Polynomial Neural Networks(SOPNN), discuss a comprehensive design methodology and carry out a series of numeric experiments. The conventional SOPNN is based on the extended Group Method of Data Handling(GMDH) method and utilized the polynomial order (viz. linear, quadratic, and modified quadratic) as well as the number of node inputs fixed (selected in advance by designer) at Polynomial Neurons (or nodes) located in each layer through a growth process of the network. Moreover it does not guarantee that the SOPNN generated through learning has the optimal network architecture. But the proposed GA-based SOPNN enable the architecture to be a structurally more optimized network, and to be much more flexible and preferable neural network than the conventional SOPNN. In order to generate the structurally optimized SOPNN, GA-based design procedure at each stage (layer) of SOPNN leads to the selection of preferred nodes (or PNs) with optimal parameters- such as the number of input variables, input variables, and the order of the polynomial-available within SOPNN. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between approximation and generalization (predictive) abilities of the model. A detailed design procedure is discussed in detail. To evaluate the performance of the GA-based SOPNN, the model is experimented with using two time series data (gas furnace and NOx emission process data of gas turbine power plant). A comparative analysis shows that the proposed GA-based SOPNN is model with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.

자력(自力) RBF 신경망 등화기 (Self Organizing RBF Neural Network Equalizer)

  • 김정수;정정화
    • 전자공학회논문지CI
    • /
    • 제39권1호
    • /
    • pp.35-47
    • /
    • 2002
  • 본 논문은 디지털 통신 채널의 등화를 위한 자력 RBF 신경망 등화기를 제안한다. RBF 신경망을 이용한 등화기에서, 이상적인 채널 상태인 RBF 센터를 정확하고 빠르게 추정하는 것이 가장 중요하다. 그러나, 기존의 RBF 등화기는 채널 상태의 개수를 사전에 알아야 하며, 많은 수의 센터가 필요하다는 단점을 지니므로 실제 통신 시스템에 이용되지 않는다. 본 논문에서 제안하는 자력 RBF 신경망 등화기는 등화에 필요한 RBF 센터를 새로운 추가 기준과 제거 기준에 의해 등화기로 입력되는 신호 중에서 스스로 선택하기 때문에 채널 상태의 개수에 대한 사전 정보 없이도 등화가 가능하다. 또한 제안된 등화기는 LMS 알고리즘과 클러스터링을 이용하는 훈련 과정을 통해 기존 RBF 등화기보다 적은 센터만으로도 등화가 가능한 장점을 갖는다. 선형 및 비선형 채널과 표준 전화 채널에서, 제안한 등화기와 최적 Bayesian 등화기의 BER 성능, 심볼결정 경계, 센터 수 등을 비교하였다. 그 결과 제안한 등화기는 Bayesian 등화기와 거의 동일한 성능을 나타냄을 알 수 있었다.

Intelligent Control by Immune Network Algorithm Based Auto-Weight Function Tuning

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.120.2-120
    • /
    • 2002
  • In this paper auto-tuning scheme of weight function in the neural networks has been suggested by immune algorithm for nonlinear process. A number of structures of the neural networks are considered as learning methods for control system. A general view is provided that they are the special cases of either the membership functions or the modification of network structure in the neural networks. On the other hand, since the immune network system possesses a self organizing and distributed memory, it is thus adaptive to its external environment and allows a PDP (parallel distributed processing) network to complete patterns against the environmental situation. Also. It can provi..

  • PDF

자기조직화 신경망을 이용한 다중 표적 추적에 관한 연구 (A Study on Multiple Target Tracking Using Self-Organizing Neural Network)

  • 서창진;김광백
    • 한국정보통신학회논문지
    • /
    • 제7권6호
    • /
    • pp.1304-1311
    • /
    • 2003
  • 실세계환경에서 물체를 추적하는 기술은 영상의 지속적인 변화 및 영상데이터 방대함과 처리속도의 문제로 인하여 해결하기 어려운 문제이다. 특히 해상과 같은 환경에서는 더욱 어려운 현실이다. 본 논문에서는 복잡한 환경에서 물체를 추적하고 탐지하기 위한 방법으로 자기조직화 신경망을 사용하여 구성하였다. 본 논문에서의 접근 방법은 코호넨의 자기 조직화 신경망 분석 기법과 영역확장 기법 및 에너지 최소화함수를 이용하여 물체 추적시스템을 구성하였다. 자기조직화 신경망은 하나의 프레임 내에서 이동하는 물체의 중심점을 탐지할 수 있다. 그리고 연속적인 영상에서 이전에 탐지되어진 뉴런의 위치를 이용하여 물체를 추적할 수 있다. 자기조직화 신경망을 이용한 물체 추적의 실험결과 다양한 환경의 변화에서도 물체의 추적이 가능함을 알 수 있었다.

Unsupervised learning with hierarchical feature selection for DDoS mitigation within the ISP domain

  • Ko, Ili;Chambers, Desmond;Barrett, Enda
    • ETRI Journal
    • /
    • 제41권5호
    • /
    • pp.574-584
    • /
    • 2019
  • A new Mirai variant found recently was equipped with a dynamic update ability, which increases the level of difficulty for DDoS mitigation. Continuous development of 5G technology and an increasing number of Internet of Things (IoT) devices connected to the network pose serious threats to cyber security. Therefore, researchers have tried to develop better DDoS mitigation systems. However, the majority of the existing models provide centralized solutions either by deploying the system with additional servers at the host site, on the cloud, or at third party locations, which may cause latency. Since Internet service providers (ISP) are links between the internet and users, deploying the defense system within the ISP domain is the panacea for delivering an efficient solution. To cope with the dynamic nature of the new DDoS attacks, we utilized an unsupervised artificial neural network to develop a hierarchical two-layered self-organizing map equipped with a twofold feature selection for DDoS mitigation within the ISP domain.

퍼지다항식 뉴론 기반의 유전론적 최적 자기구성 퍼지 다항식 뉴럴네트워크 (Genetically Opimized Self-Organizing Fuzzy Polynomial Neural Networks Based on Fuzzy Polynomial Neurons)

  • 박호성;이동윤;오성권
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권8호
    • /
    • pp.551-560
    • /
    • 2004
  • In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks (SOFPNN) that is based on a genetically optimized multilayer perceptron with fuzzy polynomial neurons (FPNs) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially genetic algorithms (GAs). The proposed SOFPNN gives rise to a structurally optimized structure and comes with a substantial level of flexibility in comparison to the one we encounter in conventional SOFPNNs. The design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics (such as the number of input variables, the order of the polynomial of the consequent part of fuzzy rules, and a collection of the specific subset of input variables) and addresses specific aspects of parametric optimization. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. To evaluate the performance of the genetically optimized SOFPNN, the model is experimented with using two time series data(gas furnace and chaotic time series), A comparative analysis reveals that the proposed SOFPNN exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literatures.

Self-Organization of Visuo-Motor Map Considering an Obstacle

  • Maruki, Yuji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1168-1171
    • /
    • 2003
  • The visuo-motor map is based on the Kohonen's self-organizing map. The map is learned the relation of the end effecter coordinates and the joint angles. In this paper, a 3 d-o-fmanipulator which moves in the 2D space is targeted. A CCD camera is set beside the manipulator, and the end effecter coordinates are given from the image of a manipulator. As a result of learning, the end effecter can be moved to the destination without exact teaching.

  • PDF