Proceedings of the Korean Information Science Society Conference
/
2004.10a
/
pp.346-348
/
2004
급증하고 있는 인터넷 환경에서 정보보호는 가장 중요한 고려사항 중 하나이다. 특히, 인터넷의 발달로 빠르게 확산되고 있는 웜 바이러스는 현재 바이러스의 대부분을 차지하며, 다양한 종류의 바이러스들과 악성코드들을 네트워크에 전파시키고 있다 지금 이 순간도 웜 바이러스가 네트워크를 통해 확산되고 있지만, 웜 바이러스의 탐지가 응용레벨에서의 룰-매칭 방식에 근거하고 있기 때문에 신종이나 변종 웜 바이러스에 대해서 탐지가 난해하고, 감염된 이후에 탐지를 할 수밖에 없다는 한계를 가지고 있다. 본 연구에서는 신종이나 변종 웜 바이러스의 탐지가 가능하고, 네트워크 레벨에서 탐지할 수 있는 신경망의 인공지능 모델 중 SOFM을 이용한 웜 바이러스 탐지 방안을 제시한다.
Proceedings of the Korea Water Resources Association Conference
/
2012.05a
/
pp.336-339
/
2012
Accurate forecasting of pan evaporation (PE) is very important for monitoring, survey, and management of water resources. The purpose of this study is to develop and apply Kohonen self-organizing feature maps neural networks model (KSOFM-NNM) to forecast the daily PE for the dry climate region in south western Iran. KSOFM-NNM for Ahwaz station was used to forecast daily PE on the basis of temperature-based, radiation-based, and sunshine duration-based input combinations. The measurements at Ahwaz station in south western Iran, for the period of January 2002 - December 2008, were used for training, cross-validation and testing data of KSOFM-NNM. The results obtained by TEM 1 produced the best results among other combinations for Ahwaz station. Based on the comparisons, it was found that KSOFM-NNM can be employed successfully for forecasting the daily PE from the limited climatic data in south western Iran.
Recently, provides information which is most necessary to the user the research against the web information recommendation system for the Internet shopping mall is actively being advanced. the back which it will drive in the object. In that Dynamic Web Recommendation Method Using SOM (Self-Organizing Feature Maps) has the advantages of speedy execution and simplicity but has the weak points such as the lack of explanation on models and fired weight values for each node of the output layer on the established model. The method proposed in this study solves the lack of explanation using the Bayesian reasoning method. It does not give fixed weight values for each node of the output layer. Instead, the distribution includes weight using Hybrid SOM. This study designs and implements Dynamic Web Recommendation Method Using Hybrid SOM. The result of the existing Web Information recommendation methods has proved that this study's method is an excellent solution.
Kohonen's self organizing feature map (SOFM) converts arbitrary dimensional patterns into one or two dimensional arrays of nodes. Among the many competitive learning algorithms, SOFM proposed by Kohonen is considered to be powerful in the sense that it not only clusters the input pattern adaptively but also organize the output node topologically. SOFM is usually used for a preprocessor or cluster. It can perform dimensional reduction of input patterns and obtain a topology-preserving map that preserves neighborhood relations of the input patterns. The traditional SOFM algorithm[1] is a competitive learning neural network that maps inputs to discrete points that are called nodes on a lattice...
Journal of Institute of Control, Robotics and Systems
/
v.15
no.4
/
pp.451-455
/
2009
This paper provides a comparison of global path planning method in single string by using pulled and pushed SOFM (Self-Organizing Feature Map) which is a method among a number of neural network. The self-organizing feature map uses a randomized small valued initial-weight-vectors, selects the neuron whose weight vector best matches input as the winning neuron, and trains the weight vectors such that neurons within the activity bubble are move toward the input vector. On the other hand, the modified SOFM method in this research uses a predetermined initial weight vectors of the one dimensional string, gives the systematic input vector whose position best matches obstacles, and trains the weight vectors such that neurons within the activity bubble are move toward or reverse the input vector, by rising a pulled- or a pushed-SOFM. According to simulation results one can conclude that the modified neural networks in single string are useful tool for the global path planning problem of a mobile robot. In comparison of the number of iteration for converging to the solution the pushed-SOFM is more useful than the pulled-SOFM in global path planning for mobile robot.
In order to construct a feature map-based phoneme classification system for speech recognition, two procedures are usually required. One is clustering and the other is labeling. In this paper, we present a phoneme classification system based on the Kohonen's Self-Organizing Feature Map (SOFM) for clusterer and labeler. It is known that the SOFM performs self-organizing process by which optimal local topographical mapping of the signal space and yields a reasonably high accuracy in recognition tasks. Consequently, SOFM can effectively be applied to the recognition of phonemes. Besides to improve the performance of the phoneme classification system, we propose the learning algorithm combined with the classical K-mans clustering algorithm in fine-tuning stage. In order to evaluate the performance of the proposed phoneme classification algorithm, we first use totaly 43 phonemes which construct six intra-class feature maps for six different phoneme classes. From the speaker-dependent phoneme classification tests using these six feature maps, we obtain recognition rate of $87.2\%$ and confirm that the proposed algorithm is an efficient method for improvement of recognition performance and convergence speed.
Journal of the Korean Institute of Telematics and Electronics B
/
v.30B
no.8
/
pp.64-70
/
1993
This paper presents an efficient SOFM(self-organizing feature map) algorithm for the solution of the large scale TSPs(traveling salesman problems). Because no additional winner neuron for each city is created in the next competition, the proposed algorithm requires just only the N output neurons and 2N connections, which are fixed during the whole process, for N-city TSP, and it does not requires any extra algorithm of creation of deletion of the neurons. And due to direct exploitation of the output potential in adaptively controlling the neighborhood, the proposed algorithm can obtain higher convergence rate to the suboptimal solutions. Simulation results show about 30% faster convergence and better solution than the conventional algorithm for solving the 30-city TSP and even for the large scale of 1000-city TSPs.
The Journal of Korean Institute of Communications and Information Sciences
/
v.21
no.3
/
pp.600-611
/
1996
Recently, neural network-based speech recognition has been studied to utilize the adaptivity and learnability of neural network models. However, conventional neural network models have difficulty in the co-articulation processing and the boundary detection of similar phonmes of the Korean speech. Also, in case of using one phonotopic map, learning speed may dramatically increase and inaccuracies may be caused because homogeneous learning and recognition method should be applied for heterogenous data. Hence, in this paper, a neural net typewriter has been designed using a hierarchical self-organizing classifier(HSOC), and related algorithms are presented. This HSOC, during its learing stage, distributed phoneme data on hierarchically structured multiple phonotopic maps, using Kohonen's self-organizing feature maps(SOFM). Presented and experimented in this paper were the algorithms for deciding the number of maps, map sizes, the selection of phonemes and their placement per map, an approapriate learning and preprocessing method per map. If maps are divided according to a priorlinguistic knowledge, we would have difficulty in acquiring linguistic knowledge and how to alpply it(e.g., processing extended phonemes). Contrarily, our HSOC has an advantage that multiple phonotopic maps suitable for given input data are self-organizable. The resulting three korean phonotopic maps are optimally labelled and have their own optimal preprocessing schemes, and also confirm to the conventional linguistic knowledge.
Feature-based similarity retrieval has become an important research issue in multimedia database systems. The features of multimedia data are useful for discriminating between multimedia objects (e 'g', documents, images, video, music score, etc.). For example, images are represented by their color histograms, texture vectors, and shape descriptors, and are usually high-dimensional data. The performance of conventional multidimensional data structures(e'g', R- Tree family, K-D-B tree, grid file, TV-tree) tends to deteriorate as the number of dimensions of feature vectors increases. The R*-tree is the most successful variant of the R-tree. In this paper, we propose a SOM-based R*-tree as a new indexing method for high-dimensional feature vectors.The SOM-based R*-tree combines SOM and R*-tree to achieve search performance more scalable to high dimensionalities. Self-Organizing Maps (SOMs) provide mapping from high-dimensional feature vectors onto a two dimensional space. The mapping preserves the topology of the feature vectors. The map is called a topological of the feature map, and preserves the mutual relationship (similarity) in the feature spaces of input data, clustering mutually similar feature vectors in neighboring nodes. Each node of the topological feature map holds a codebook vector. A best-matching-image-list. (BMIL) holds similar images that are closest to each codebook vector. In a topological feature map, there are empty nodes in which no image is classified. When we build an R*-tree, we use codebook vectors of topological feature map which eliminates the empty nodes that cause unnecessary disk access and degrade retrieval performance. We experimentally compare the retrieval time cost of a SOM-based R*-tree with that of an SOM and an R*-tree using color feature vectors extracted from 40, 000 images. The result show that the SOM-based R*-tree outperforms both the SOM and R*-tree due to the reduction of the number of nodes required to build R*-tree and retrieval time cost.
Journal of Korean Institute of Industrial Engineers
/
v.25
no.3
/
pp.382-392
/
1999
Industrial robots have increased in both the number and applications in today's material handling systems. However, traditional approaches to robot controling have had limited success in complicated environment, especially for real time applications. One of the main reasons for this is that most traditional methods use a set of kinematic equations to figure out the physical environment of the robot. In this paper, a neural network model to solve robot manipulator's inverse kinematics problem is suggested. It is composed of two Self-Organizing Feature Maps by which the workspace of robot environment and the joint space of robot manipulator is inter-linked to enable the learning of the inverse kinematic relationship between workspace and joint space. The proposed model has been simulated with two robot manipulators, one, consisting of 2 links in 2-dimensional workspace and the other, consisting of 3 links in 2-dimensional workspace, and the performance has been tested by accuracy of the manipulator's positioning and the response time.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.