• Title/Summary/Keyword: self-organized clustering

Search Result 18, Processing Time 0.029 seconds

Tool Breakage Detection in Face Milling Using a Self Organized Neural Network (자기구성 신경회로망을 이용한 면삭밀링에서의 공구파단검출)

  • 고태조;조동우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.1939-1951
    • /
    • 1994
  • This study introduces a new tool breakage detecting technology comprised of an unsupervised neural network combined with adaptive time series autoregressive(AR) model where parameters are estimated recursively at each sampling instant using a parameter adaptation algorithm based on an RLS(Recursive Least Square). Experiment indicates that AR parameters are good features for tool breakage, therefore it can be detected by tracking the evolution of the AR parameters during milling process. an ART 2(Adaptive Resonance Theory 2) neural network is used for clustering of tool states using these parameters and the network is capable of self organizing without supervised learning. This system operates successfully under the wide range of cutting conditions without a priori knowledge of the process, with fast monitoring time.

A Self-organized Network Topology Configuration in Underwater Sensor Networks (수중센서 네트워크에서 자기 조직화 기법을 이용한 네트워크 토폴로지 구성법)

  • Kim, Kyung-Taek;Cho, Ho-Shin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.8
    • /
    • pp.542-550
    • /
    • 2012
  • In this paper, an adaptive scheme for network topology configuration is proposed to save the overall energy consumption in underwater acoustic sensor network. The proposed scheme employs a self-organized networking methodology where network topology is locally optimized by exchanging the energy-related information between neighboring nodes such as the remaining energy of each node, in a way that the network life time can be augmented without any centralized control function. Computer simulation is used to evaluate the proposed scheme comparing with LEACH in terms of the number of alive nodes after a given time, the deviation of individual nodes' residual energy and the energy consumption at the initialization and coordination stages.

Feature Extraction based FE-SONN for Signature Verification (서명 검증을 위한 특정 기반의 FE-SONN)

  • Koo Gun-Seo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.93-102
    • /
    • 2005
  • This paper proposes an approach to verify signature using autonomous self-organized Neural Network Model , fused with fuzzy membership equation of fuzzy c-means algorithm, based on the features of the signature. To overcome limitations of the functional approach and Parametric approach among the conventional on-line signature recognition approaches, this Paper presents novel autonomous signature classification approach based on clustering features. Thirty-six globa1 features and twelve local features were defined, so that a signature verifying system with FE-SONN that learns them was implemented. It was experimented for total 713 signatures that are composed of 155 original signatures and 180 forged signatures yet 378 original signatures written by oneself. The success rate of this test is more than 97.67$\%$ But, a few forged signatures that could not be detected by human eyes could not be done by the system either.

  • PDF

Domestic and Foreign Case Studies on the Residential Core Model of the Second Home Child Care Center (집과 같은 어린이집 모형 제안을 위한 국내외 사례연구)

  • Kim, Young-Aee;Choi, Mock-Wha;Park, Jung-A
    • Journal of the Korean housing association
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • Number of children cared by child care centers has getting up almost half of the from zero to five year age group in korea. Home care children' activities are reported more active and natural than those of center care children. So this study seek the design guidelines for the residential core model of child care centers as second home in korea. The residential core model by Anita Lui Olds was selected and ten domestic center cases were surveyed for guidelines. Firstly, daily-residential core model is learning by daily life at home, and is equiped with cooking kitchenet and group activity area in group room. Secondly, play-residental core model is learning by playing by self, and is equiped with acting, eating and reading common area clustering two or three group room. Thirdly, eco-residental core model is learning by eco-friendly activities, and is equiped with companying, cooperating and sharing area. Fourthly, project-residental core model is learning by project by self, and is equiped with drawing, experimenting and presenting common area. Fifthly, the space of residential core model is organized with three or four group room and clustering living or common area. The larger the center is, the more the cluster is vertically. Facility area and outdoor playground per child is about 7 and $3m^2$.

The Development of Dynamic Forecasting Model for Short Term Power Demand using Radial Basis Function Network (Radial Basis 함수를 이용한 동적 - 단기 전력수요예측 모형의 개발)

  • Min, Joon-Young;Cho, Hyung-Ki
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.7
    • /
    • pp.1749-1758
    • /
    • 1997
  • This paper suggests the development of dynamic forecasting model for short-term power demand based on Radial Basis Function Network and Pal's GLVQ algorithm. Radial Basis Function methods are often compared with the backpropagation training, feed-forward network, which is the most widely used neural network paradigm. The Radial Basis Function Network is a single hidden layer feed-forward neural network. Each node of the hidden layer has a parameter vector called center. This center is determined by clustering algorithm. Theatments of classical approached to clustering methods include theories by Hartigan(K-means algorithm), Kohonen(Self Organized Feature Maps %3A SOFM and Learning Vector Quantization %3A LVQ model), Carpenter and Grossberg(ART-2 model). In this model, the first approach organizes the load pattern into two clusters by Pal's GLVQ clustering algorithm. The reason of using GLVQ algorithm in this model is that GLVQ algorithm can classify the patterns better than other algorithms. And the second approach forecasts hourly load patterns by radial basis function network which has been constructed two hidden nodes. These nodes are determined from the cluster centers of the GLVQ in first step. This model was applied to forecast the hourly loads on Mar. $4^{th},\;Jun.\;4^{th},\;Jul.\;4^{th},\;Sep.\;4^{th},\;Nov.\;4^{th},$ 1995, after having trained the data for the days from Mar. $1^{th}\;to\;3^{th},\;from\;Jun.\;1^{th}\;to\;3^{th},\;from\;Jul.\;1^{th}\;to\;3^{th},\;from\;Sep.\;1^{th}\;to\;3^{th},\;and\;from\;Nov.\;1^{th}\;to\;3^{th},$ 1995, respectively. In the experiments, the average absolute errors of one-hour ahead forecasts on utility actual data are shown to be 1.3795%.

  • PDF

Intrusion Detection System Modeling Based on Learning from Network Traffic Data

  • Midzic, Admir;Avdagic, Zikrija;Omanovic, Samir
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5568-5587
    • /
    • 2018
  • This research uses artificial intelligence methods for computer network intrusion detection system modeling. Primary classification is done using self-organized maps (SOM) in two levels, while the secondary classification of ambiguous data is done using Sugeno type Fuzzy Inference System (FIS). FIS is created by using Adaptive Neuro-Fuzzy Inference System (ANFIS). The main challenge for this system was to successfully detect attacks that are either unknown or that are represented by very small percentage of samples in training dataset. Improved algorithm for SOMs in second layer and for the FIS creation is developed for this purpose. Number of clusters in the second SOM layer is optimized by using our improved algorithm to minimize amount of ambiguous data forwarded to FIS. FIS is created using ANFIS that was built on ambiguous training dataset clustered by another SOM (which size is determined dynamically). Proposed hybrid model is created and tested using NSL KDD dataset. For our research, NSL KDD is especially interesting in terms of class distribution (overlapping). Objectives of this research were: to successfully detect intrusions represented in data with small percentage of the total traffic during early detection stages, to successfully deal with overlapping data (separate ambiguous data), to maximize detection rate (DR) and minimize false alarm rate (FAR). Proposed hybrid model with test data achieved acceptable DR value 0.8883 and FAR value 0.2415. The objectives were successfully achieved as it is presented (compared with the similar researches on NSL KDD dataset). Proposed model can be used not only in further research related to this domain, but also in other research areas.

A Hybrid Forecasting Framework based on Case-based Reasoning and Artificial Neural Network (사례기반 추론기법과 인공신경망을 이용한 서비스 수요예측 프레임워크)

  • Hwang, Yousub
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.43-57
    • /
    • 2012
  • To enhance the competitive advantage in a constantly changing business environment, an enterprise management must make the right decision in many business activities based on both internal and external information. Thus, providing accurate information plays a prominent role in management's decision making. Intuitively, historical data can provide a feasible estimate through the forecasting models. Therefore, if the service department can estimate the service quantity for the next period, the service department can then effectively control the inventory of service related resources such as human, parts, and other facilities. In addition, the production department can make load map for improving its product quality. Therefore, obtaining an accurate service forecast most likely appears to be critical to manufacturing companies. Numerous investigations addressing this problem have generally employed statistical methods, such as regression or autoregressive and moving average simulation. However, these methods are only efficient for data with are seasonal or cyclical. If the data are influenced by the special characteristics of product, they are not feasible. In our research, we propose a forecasting framework that predicts service demand of manufacturing organization by combining Case-based reasoning (CBR) and leveraging an unsupervised artificial neural network based clustering analysis (i.e., Self-Organizing Maps; SOM). We believe that this is one of the first attempts at applying unsupervised artificial neural network-based machine-learning techniques in the service forecasting domain. Our proposed approach has several appealing features : (1) We applied CBR and SOM in a new forecasting domain such as service demand forecasting. (2) We proposed our combined approach between CBR and SOM in order to overcome limitations of traditional statistical forecasting methods and We have developed a service forecasting tool based on the proposed approach using an unsupervised artificial neural network and Case-based reasoning. In this research, we conducted an empirical study on a real digital TV manufacturer (i.e., Company A). In addition, we have empirically evaluated the proposed approach and tool using real sales and service related data from digital TV manufacturer. In our empirical experiments, we intend to explore the performance of our proposed service forecasting framework when compared to the performances predicted by other two service forecasting methods; one is traditional CBR based forecasting model and the other is the existing service forecasting model used by Company A. We ran each service forecasting 144 times; each time, input data were randomly sampled for each service forecasting framework. To evaluate accuracy of forecasting results, we used Mean Absolute Percentage Error (MAPE) as primary performance measure in our experiments. We conducted one-way ANOVA test with the 144 measurements of MAPE for three different service forecasting approaches. For example, the F-ratio of MAPE for three different service forecasting approaches is 67.25 and the p-value is 0.000. This means that the difference between the MAPE of the three different service forecasting approaches is significant at the level of 0.000. Since there is a significant difference among the different service forecasting approaches, we conducted Tukey's HSD post hoc test to determine exactly which means of MAPE are significantly different from which other ones. In terms of MAPE, Tukey's HSD post hoc test grouped the three different service forecasting approaches into three different subsets in the following order: our proposed approach > traditional CBR-based service forecasting approach > the existing forecasting approach used by Company A. Consequently, our empirical experiments show that our proposed approach outperformed the traditional CBR based forecasting model and the existing service forecasting model used by Company A. The rest of this paper is organized as follows. Section 2 provides some research background information such as summary of CBR and SOM. Section 3 presents a hybrid service forecasting framework based on Case-based Reasoning and Self-Organizing Maps, while the empirical evaluation results are summarized in Section 4. Conclusion and future research directions are finally discussed in Section 5.

Strategy for Store Management Using SOM Based on RFM (RFM 기반 SOM을 이용한 매장관리 전략 도출)

  • Jeong, Yoon Jeong;Choi, Il Young;Kim, Jae Kyeong;Choi, Ju Choel
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.93-112
    • /
    • 2015
  • Depending on the change in consumer's consumption pattern, existing retail shop has evolved in hypermarket or convenience store offering grocery and daily products mostly. Therefore, it is important to maintain the inventory levels and proper product configuration for effectively utilize the limited space in the retail store and increasing sales. Accordingly, this study proposed proper product configuration and inventory level strategy based on RFM(Recency, Frequency, Monetary) model and SOM(self-organizing map) for manage the retail shop effectively. RFM model is analytic model to analyze customer behaviors based on the past customer's buying activities. And it can differentiates important customers from large data by three variables. R represents recency, which refers to the last purchase of commodities. The latest consuming customer has bigger R. F represents frequency, which refers to the number of transactions in a particular period and M represents monetary, which refers to consumption money amount in a particular period. Thus, RFM method has been known to be a very effective model for customer segmentation. In this study, using a normalized value of the RFM variables, SOM cluster analysis was performed. SOM is regarded as one of the most distinguished artificial neural network models in the unsupervised learning tool space. It is a popular tool for clustering and visualization of high dimensional data in such a way that similar items are grouped spatially close to one another. In particular, it has been successfully applied in various technical fields for finding patterns. In our research, the procedure tries to find sales patterns by analyzing product sales records with Recency, Frequency and Monetary values. And to suggest a business strategy, we conduct the decision tree based on SOM results. To validate the proposed procedure in this study, we adopted the M-mart data collected between 2014.01.01~2014.12.31. Each product get the value of R, F, M, and they are clustered by 9 using SOM. And we also performed three tests using the weekday data, weekend data, whole data in order to analyze the sales pattern change. In order to propose the strategy of each cluster, we examine the criteria of product clustering. The clusters through the SOM can be explained by the characteristics of these clusters of decision trees. As a result, we can suggest the inventory management strategy of each 9 clusters through the suggested procedures of the study. The highest of all three value(R, F, M) cluster's products need to have high level of the inventory as well as to be disposed in a place where it can be increasing customer's path. In contrast, the lowest of all three value(R, F, M) cluster's products need to have low level of inventory as well as to be disposed in a place where visibility is low. The highest R value cluster's products is usually new releases products, and need to be placed on the front of the store. And, manager should decrease inventory levels gradually in the highest F value cluster's products purchased in the past. Because, we assume that cluster has lower R value and the M value than the average value of good. And it can be deduced that product are sold poorly in recent days and total sales also will be lower than the frequency. The procedure presented in this study is expected to contribute to raising the profitability of the retail store. The paper is organized as follows. The second chapter briefly reviews the literature related to this study. The third chapter suggests procedures for research proposals, and the fourth chapter applied suggested procedure using the actual product sales data. Finally, the fifth chapter described the conclusion of the study and further research.