• Title/Summary/Keyword: self-locking

Search Result 46, Processing Time 0.029 seconds

An Optical Pulse-Width Modulation Generator Using a Single-Mode Fabry-Pérot Laser Diode

  • Tran, Quoc-Hoai;Nakarmi, Bikash;Won, Yong Hyub
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.255-259
    • /
    • 2015
  • We have proposed and experimentally verified a pulse-width modulation (PWM) generator which directly generated a PWM signal in the optical domain. Output waveforms were clear at the repetition rate of 16 MHz; the duty cycle (DC) was from 14.7% to 72.1%; and the DC-control resolution was about 4.399%/dB. The PWM generator' operation principle is based on the injection-locking property of a single-mode Fabry-$P{\acute{e}}rot$ laser diode (SMFP-LD). The SMFP-LD, which has a self-locked mode wavelength at ${\lambda}_{PWM}$, was used to detect the power of the injection-locking signal (optical analog input). If the analog input power is high, the SMFP-LD is locked to the wavelength of the input signal ${\lambda}_a$ and there is no output after an optical bandpass filter (OBF). If the analog input power is low, the SMFP-LD is unlocked and there is output signal at ${\lambda}_{PWM}$ after the OBF. Thus, the SMFP-LD plus the OBF provide digital output for an analog input. The DC of the output PWM signal can be controlled by tuning the power of the analog input.

Development of the Myoelectric Hand with a 2 DOF Auto Wrist Module (2 자유도 자동손목관절을 가진 근전 전동의수 개발)

  • Park, Se-Hoon;Hong, Beom-Ki;Kim, Jong-Kwon;Hong, Eyong-Pyo;Mun, Mu-Seong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.824-832
    • /
    • 2011
  • An essential consideration to differentiate prosthetic hand from robot hand is its convenience and usefulness rather than high resolution or multi-function of the robot hand. Therefore, this study proposes a myoelectric hand with a 2 DOF auto wrist module which has 6 essential functions of the human hand such as open, grasp, pronation, supination, extension, flexion, which improves the convenience of the daily life. It consists of the 3 main parts, the myoelectric sensor for input signal without additional attachment to operate the prosthetic hand, hand mechanism with high-torqued auto-transmission mechanism and self-locking module which guarantee the safety under the abrupt emergency and minimum power consumption, and dual threshold based controller to make easy for adopting the multi-DOF myoelectric hand. We prove the validity of the proposed system with experimental results.

Experimental Study on an Underwater Pole Climb Robot for the Maintenance of Offshore Wind Turbine Substructures (해상풍력발전 지지구조물의 유지보수용 수중 기둥등반로봇에 관한 실험적 연구)

  • Im, Eun Cheol;Ko, Jin Hwan
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.238-244
    • /
    • 2022
  • Maintenance works of offshore wind turbines could take a longer time, which causes the reduction of their energy production efficiency, than those of onshore wind turbines owing to severe offshore environment. Subsequently, preventive maintenance measures are required to increase the production efficiency. Thus, we proposed a wheel-based Underwater Pole Climbing Robot (UPCR) platform, which was aimed at the periodic inspection and maintenance of the substructures of the offshore wind turbines, with three advantages: high speed, good mobility and low power consumption. In the proposed platform, a self-locking system using a gripper module was adopted for preventing slippery problem and a dual configuration was chosen for moving on a branched structure. As a result, the proposed robot was able to continuously climb, preserve it's position at the pole without consuming energy, and move from the pole to the other branched pole. The results of this research show that the UPCR has basic moving capabilities required for the underwater work for the substructures of the offshore wind turbines.

Self-Pulsation in Multisection Distributed Feedback Laser Diode with a Novel Dual Grating Structure

  • Park, Kyung-Hyun;Leem, Young-Ahn;Yee, Dae-Su;Baek, Yong-Soon;Kim, Dong-Churl;Kim, Sung-Bock;Sim, Eun-Deok
    • ETRI Journal
    • /
    • v.25 no.3
    • /
    • pp.149-155
    • /
    • 2003
  • A self-pulsating multisection distributed-feedback laser diode (DFB LD) can potentially realize all-optical clock extraction. This device generally consists of three sections, two DFB sections and one waveguide section. The most important variable in this device is detuning, which is the relative spectral position between the stop bands of two DFB sections. We fabricated a novel structure in which two gratings were located one over and one under the active layers. Each grating structure was independently defined in processing so that detuning, which is the prerequisite for self-pulsation, could be easily controlled. Observing various self-pulsating phenomena in these devices under several detuning conditions, we characterized the phenomena as dispersive Q-switching, mode beating, and self-mode-locking.

  • PDF

Design and Fabrication of Self-Oscillating Mixer Using Subharmonic Injection Locked Oscillator for 5GHz (주입 동기 방식을 이용한 5GHz 대역 자기발진 주파수 혼합기의 설계 및 제작)

  • 류재종;이주갑;류원열;윤영섭;최현철
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.86-89
    • /
    • 2003
  • In this paper, Self-Oscillating Mixer is designed by oscillator that was based on a general nonlinear input-output model for the subharmonic injection locked oscillator is analysed. We have designed and fabricated the Self-Oscillating Mixer for 5GHz by proposed subharmonic injection locked oscillator based frequency synthesizer structure that have characteristic of good frequency sensitivity, good phase noise. The design strategy leading to an optimized SILO with regards to its locking range is described and a test SOM circuit is demonstrated a 4dB conversion gain at 280MHz IF frequency from the carrier.

  • PDF

Temporal characterization of sub-10-fs laser pulses using multi-shot frequency-resolved optical gating technique (다중펄스 주파수분해 광게이팅을 이용한 10 펨토초 미만의 레이저 펄스의 시간특성 측정)

  • 이용수;홍경한;성재희;남창희
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.40-41
    • /
    • 2003
  • (self-focusing)을 이용한 커렌즈 모드록킹(Kerr-lens mode-locking; KLM) 방법을 이용하면 간단한 구조를 갖는 공진기로 100 펨토초(femto=10-13) 미만의 레이저 펄스를 생성할 수 있다. KLM 티타늄사파이어(Ti:sapphire) 레이저의 발달로 10 펨토초 영역의 레이저 펄스를 간단하게 생성할 수 있게 되었으며 특히, 넓은 스펙트럼 폭을 가지는 처프거울(chirped mirror)의 사용과 정확한 분산의 보정을 통한 5 펨토초(800 nm 파장의 두 주기에 해당) 영역의 레이저 펄스 생성도 보고되고 있다.

  • PDF

A Novel Fast Open-loop Phase Locking Scheme Based on Synchronous Reference Frame for Three-phase Non-ideal Power Grids

  • Xiong, Liansong;Zhuo, Fang;Wang, Feng;Liu, Xiaokang;Zhu, Minghua;Yi, Hao
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1513-1525
    • /
    • 2016
  • Rapid and accurate phase synchronization is critical for the reliable control of grid-tied inverters. However, the commonly used software phase-locked loop methods do not always satisfy the need for high-speed and accurate phase synchronization under severe grid imbalance conditions. To address this problem, this study develops a novel open-loop phase locking scheme based on a synchronous reference frame. The proposed scheme is characterized by remarkable response speed, high accuracy, and easy implementation. It comprises three functional cascaded blocks: fast orthogonal signal generation block, fast fundamental-frequency positive sequence component construction block, and fast phase calculation block. The developed virtual orthogonal signal generation method in the first block, which is characterized by noise immunity and high accuracy, can effectively avoid approximation errors and noise amplification in a wide range of sampling frequencies. In the second block, which is the foundation for achieving fast phase synchronization within 3 ms, the fundamental-frequency positive sequence components of unsymmetrical grid voltages can be achieved with the developed orthogonal signal construction strategy and the symmetrical component method. The real-time grid phase can be consequently obtained in the third block, which is free from self-tuning closed-loop control and thus improves the dynamic performance of the proposed scheme. The proposed scheme is adaptive to severe unsymmetrical grid voltages with sudden changes in magnitude, phase, and/or frequency. Moreover, this scheme is able to eliminate phase errors induced by harmonics and random noise. The validity and utility of the proposed scheme are verified by the experimental results.

Seismic Performance of Composite Beam-to-Column Joints Using Wedges (쐐기의 원리를 이용한 합성 보-기둥 접합부의 내진성능에 관한 연구)

  • Park, Jong-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.6
    • /
    • pp.63-68
    • /
    • 2007
  • The purpose of this study was to develop a new connection method between steel beams and PC columns known as SL connectors. Composite moment frames consisting of PC columns (or composite columns) and steel beams make the best use of advantages of both concrete and steel materials. However, the connection between two members of different materials can be complex and/or increase the fabrication costs significantly. The concept of SL connectors is based on using wedges and the emphasis is on a self-locking (SL) feature. SL connectors are easy to install and provide better seismic performance compared to conventional connections. To evaluate the seismic performance of the steel beam-to-PC column joints with SL connectors, cyclic load tests were conducted. Test result showed that steel beam-to-concrete column joint with SL connectors was able to provide sufficient performance for use in seismic resistant moment frames.

Finite element analysis for 3-D self-contact problems of C.v.joint rubber boots (3차원 자체접촉을 위한 유한요소해석에 의한 등속조인트 고무부트의 변형해석)

  • Lee, H.W.;Kim, S.H.;Lee, C.H.;Huh, H.;Lee, J.H.;Oh, S.T.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2121-2133
    • /
    • 1997
  • A finite element code is developed for 3-D self-contact problems, using continuum elements with a SRI(Selective Reduced Integration) scheme to prevent locking phenomenon by the incompressibility of rubber. Contact treatment is carried out in two ways : using the displacement constraints in case of rigid contact ; and imposing the same contact forces on two contact boundaries in case of self-contact. The finite element code developed is applied to the deformation analysis of C.V.joint boots which maintain lubrication conditions and protect the C.V.joint assembly from impact and dust. The boot accompanies large rotation depending on the rotation of the wheel axis and leading to the self-contact phenomena of the boot bellows. Since this contact phenomenon causes wear of the product and has great influence on the endurance life of the product, it is indispensable to carry out stress analysis of the rubber boots. In case of self-contact, various methods for determining contact forces have been suggested with an appropriate contact formulation. Especially, the types of penetration in self-contact are modularized to accelerate conputation with a contact algorithm.