• Title/Summary/Keyword: self-flowability

Search Result 57, Processing Time 0.024 seconds

Adhesive Strength in Tension of SBR-Modified Cement Mortar with Self-Flowability Material for Floor-Finishing (자기 평활성 바닥 마감용 SBR 시멘트 모르타르의 인장부착강도)

  • Do, Jeong-Yun;Soh, Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.549-556
    • /
    • 2003
  • Various researches on the application of polymer dispersions to the cement mortar and concrete have been practised in many countries like America, Japan and Germany and so on because of high performance and good modification effect of these. In this study, SBR, Polymer dispersion that widely used in situ is employed that the self-flowability may be induced in the cemen mortar. In order to comprehend and investigate the modification of cement mortar with self-flowability by SBR and properties and fracture mode of adhesive strength in tension of that, experimental parameter was set as SBR solid-Cement ratio(S/C) and Cement:Fine aggregate(C:F) and the experiments such as Unit weight, Flow, Consistency change, Crack resistance and Segregation that inform on the general properties have been done. In addition of that, Adhesion in tension is measured with a view to comprehending the properties and fracture mode in tensile load. Consistency change of cement mortar modified by SBR did grow better as the ratio of SBR solid-Cement increased and was much superior to that of resin based flooring such as polyurethane and epoxy which recorded the loss of consistency in 90min. after mixing. Adhesive strength in tension increased with continuity in the curing age and showed the maximum in case of C:F=1:1 and S/C=20%. As the increase of curing age, the fracture mainly happened in the concrete substrate and the interface between the specimen and concrete substrate.

Improving Flow Property of AlSi10Mg Powder for Additive Manufacturing via Surface Treatment using Methyltrichlorosilane (Methyltrichlorosilane 표면 처리를 통한 적층 제조용 AlSi10Mg 분말의 유동 특성 향상 공정 연구)

  • Park, Sang Cheol;Kim, In Yeong;Kim, Young Il;Kim, Dae-Kyeom;Lee, Kee-Ahn;Oh, Soong Ju;Lee, Bin
    • Journal of Powder Materials
    • /
    • v.29 no.5
    • /
    • pp.363-369
    • /
    • 2022
  • AlSi10Mg alloys are being actively studied through additive manufacturing for application in the automobile and aerospace industries because of their excellent mechanical properties. To obtain a consistently high quality product through additive manufacturing, studying the flowability and spreadability of the metal powder is necessary. AlSi10Mg powder easily forms an oxide film on the powder surface and has hydrophilic properties, making it vulnerable to moisture. Therefore, in this study, AlSi10Mg powder was hydrophobically modified through silane surface treatment to improve the flowability and spreadability by reducing the effects of moisture. The improved flowability according to the number of silane surface treatments was confirmed using a Carney flowmeter. In addition, to confirm the effects of improved spreadability, the powder prior to surface treatment and that subjected to surface treatment four times were measured and compared using s self-designed recoating tester. The results of this study confirmed the improved flowability and spreadability based on the modified metal powder from hydrophilic to hydrophobic for obtaining a high-quality additive manufacturing product.

Permeability of Self-Consolidating Concrete (고유동 콘크리트의 투수성에 관한 연구)

  • 김민석;최석환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.156-159
    • /
    • 2003
  • Large amount of binders and high-range AE water-reducing (HRWR) agent are required for self-consolidating concrete in order to achieve flowability and segregation resistance. In this study, the initial permeability of SSC(self-consolidating concrete) until the age of 28 days is measured and compared with those of other SSCs, in which some parts of cement are substituted with fly ash or blast furnace slag. The strengths of SSC samples are also examined along with the permeability change.

  • PDF

Study on Rheological Characteristics of Self-Compacting Concrete using Glass Bubble (글라스 버블을 사용한 자기 충전 콘크리트의 레올로지 특성에 관한 연구)

  • Lee, Han-Yong;Yoon, Seob;Seo, Tae-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.73-74
    • /
    • 2017
  • In this study, unlike high flowing concrete, using glass bubble to develop self-compacting concrete(hereinafter referred to as "SCC") with excellent filler performance by evaluating both flowability and yield stress, viscosity An experiment was conducted. Experimental results show that when 1 kg of glass bubbles are used, it is effective in stabilizing the physical properties of concrete, reducing the yield stress and viscosity.

  • PDF

An Experimental Research on the Material Properties of Super Flowing Concrete (초유동 콘크리트의 재료특성에 관한 실험적 연구)

  • 김진근;한상훈;박연동;노재호
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.3
    • /
    • pp.135-146
    • /
    • 1996
  • In this study, the properties of super flowing concrete containing fly ash were experimentally investigated and compared with those of ordinary concrete. Tests were carried out on five types of super flowing concrete mixes containing fly ash and three types of ordinary concrete mixes without fly ash. Flow test, 0-funnel test, box test, L type test and slump test were carried out to obtain the properties for flowability and workability of fresh concrete. The mechanical properties of hardened concrete were also investigated in terms of compressive strength, splitting tensile strength, modulus of elasticity, creep and drying shrinkage. In fresh concrete, it was found that super flowing concrete had excellent workability and flowability compared with ordinary concrete, and had self-compactable performance. Super flowing concrete *also had good mechanical properties at both early and late ages with compressive strength reaching as high as 40 MPa at 28 days. The creep deformation of super flowing concrete investigated was relatively lower than that of ordinary concrete, but drying shrinkage was much higher.

An Experimental Study on the Fludity of High Flowing Concrete according to the Fineness Modulus of Fine Aggregate (세골재의 조립율에 따른 고유동콘크리트의 유동특성에 관한 실험적 연구)

  • 박유신;강석표;조성현;최세진;김규용;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.385-390
    • /
    • 1997
  • In the mixing proportion of high flowing concrete we have to use quantity of power such as cement and superplasticizer, and increase the proportion of fine aggregate more than that of plain concrete to increase flowability and segregation resistance. Therefore, the fresh state of high flowing concrete is largely affected by superplasticizer and change of grade the percentage of surface water. This study aims at development of self-filling up high flowing concrete without compaction, in case of using the fine aggregate of standard grade range, by examination on the influence of fresh state of high flowing concrete, and by understanding influence on various fluidity such as flowability, reinforcement passibility, fillingability, segregation resistance.

  • PDF

Study of The Combined High Flowing Self-Compacting Concrete's Cast in Place (병용계 고유동 자기충전 라이닝콘크리트의 현장 타설에 관한 연구)

  • Choi, Wook;Park, Hyun-Myo;Choi, Yun-Wang;Lee, Kwang-Myong;Kim, Gi-Beom;Yoon, Tae-Jung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.977-980
    • /
    • 2008
  • Recently, the study on the application of SCC(Self-Compacting Concrete) is actively underway, in order to solve the lack of flowability and the poor compacting which is one of the chronic problems of tunnel lining concrete. The aim of this study is that to verify the validity of the application of SCLC(Self-Compacting Lining Concrete) for tunnel lining concrete and to examine the characteristic of flowing and mechanics of SCLC in term of comparing before and after casting SCLC was developed by Packing Factor mix method and casted in field mix-design according to the condition of site and the characteristic of aggregate. Before casting, the tests of the capability of flowability and durability was performed by slump flow, air void and so on. Additionally, the slump flow loss is measured to evaluated the possibility of cast-in-place. Furthermore, considering on the first time SCLC casting applied to the tunnel lining in Korea, it is provided that the careful items and the correct way for construction when applied the SCLC on site.

  • PDF

Flowability and Strength Properties of Mortar and Self-Compacting Concrete Mixed with Waste Concrete Powder (폐콘크리트 분말을 혼합한 모르타르 및 자기충전 콘크리트의 유동 및 강도특성)

  • Choi, Yun-Wang;Jung, Moon-Young;Moon, Dae-Joong;Kim, Sung-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.517-526
    • /
    • 2006
  • In this study, in order to utilize waste concrete powder(WCP) which is occurred in manufacturing high quality recycled aggregate as an admixture for self-compacting concrete(SCC), the properties of cement paste, mortar, and concrete that were mixed two types of WCP, 928 and 1,360 $cm^2/g$ of surface area, were analyzed. As a result of experiment, we have found that WCP was a porous material with angle. When WCP was utilized as an admixture for SCC, its flowability and viscosity increased in proportion to the increase of a replacement ratio, and that a replacement ratio of WCP was proper within 15%. The compressive strength at 28 days mixed respectively with WCP2, 15 and 30%, showed about 36 and 28 MPa, and it showed a similar trend with a function suggested in CEB-FIP for the relationship of compressive strength and elastic modulus. According to the results, it is judged that WCP2 can be utilized as an mineral admixture of normal strength SCC.

Properties of High Strength Lightweight Self-Compacting Concrete (고강도 경량 자기충전콘크리트의 성능평가)

  • 최연왕;문대중;안성일;최욱;조선규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.413-416
    • /
    • 2003
  • Experimental tests on the high strength self-compacting concrete with light-weight fine aggregate and light-weight coarse aggregate(LHSSC) were performed with slump-flow, reaching time to the slump-flow of 500mm, V-funnel dropping time and U-box difference level and compressive strength. LHSCC with light-weight fine aggregate of 75% and light-weight coarse aggregate of 100% was only satisfied with the property conditions of second self-compacting concrete(SCC), like as flowability, resistance to segregation and filling ability. The 28-day compressive strength of LHSCC indicated above 300kgf/$\textrm{cm}^2$ in all concrete mixtures, and it was increased to increase the replacement ratio of light-weight fine aggregate or to decrease the replacement ratio of light-weight coarse aggregate. Therefore, for satisfying the properties of fresh SCC and hardened concrete with above 350kgf/$\textrm{cm}^2$, it would expected that the replacement ratio of light-weight fine aggregate and light-weight coarse aggregate will be determined with 50~75% and 25~50%, respectively.

  • PDF

A Study on the Mix Design of Antiwashout Underwater Concrete According to Compressive Strength (압축강도에 따른 수중불분리 콘크리트의 배합설계에 관한 연구)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.3
    • /
    • pp.91-97
    • /
    • 2003
  • At present, the antiwashout underwater concretes are used as popular construction materials in European countries, the United States and Japan. The water-soluble polymers in the antiwashout underwater concretes provide excellent segregation or washout resistance, self-compaction and self-leveling property to the concretes. The purpose of this study is to recommend to optimum mix proportions of antiwashout underwater concretes according to compressive strength of 300kgf/$\textrm{cm}^2$ to 500kgf/$\textrm{cm}^2$. The antiwashout underwater concretes are prepared with various unit cement content, unit water content, sand-aggregate ratio, unit antiwashout agent and superplasticizer content. And they are tested for flowability, and compressive strength. From the test results, it is possible to recommend the optimum mix proportions of antiwashout underwater concretes according to compressive strengths within the range of 300kgf/$\textrm{cm}^2$ to 500kgf/$\textrm{cm}^2$.