• Title/Summary/Keyword: self-catalyzed

Search Result 13, Processing Time 0.025 seconds

Study on Poly(3,4-ethylenedioxythiophene) Thin Film Vapour Phase-Polymerized with Iron(III)Tosylate on AcOH-Catalyzed 3-Aminopropyltriethoxysilane Self-Assembled Monolayer

  • Choi, Sangil;Kim, Wondae;Kim, Sungsoo
    • Journal of Integrative Natural Science
    • /
    • v.5 no.4
    • /
    • pp.233-236
    • /
    • 2012
  • In this study, PEDOT thin films polymerized with Iron(III)tosylate ($Fe(PTS)_3$) and grown on acetic acid-catalyzed 3-aminopropyltriethoxysilane self-assembled monolayer (APS-SAM) surfaces by VPP method have been investigated. PEDOT thin films were synthesized on APS self-assembled $SiO_2$ wafer surface at two different concentrations (20 wt% and 40 wt%) and growth time (3 and 30 minutes), and then they were compared. PEDOT vapour phase-polymerized with 40 wt% $Fe(PTS)_3$ oxidant completely formed a thin film on acetic acid-catalyzed APS-SAM surface while with 20 wt% $Fe(PTS)_3$ did not at all. It means that the oxidant can be uniformly coated on acetic acid-catalyzed APS-SAM surface at the 40 wt% concentration, which gives rise to the uniform growth of PEDOT thin film on it.

Characterization of Two Self-Sufficient Monooxygenases, CYP102A15 and CYP102A170, as Long-Chain Fatty Acid Hydroxylases

  • Rimal, Hemraj;Lee, Woo-Haeng;Kim, Ki-Hwa;Park, Hyun;Oh, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.5
    • /
    • pp.777-784
    • /
    • 2020
  • Self-sufficient P450s, due to their fused nature, are the most effective tools for electron transfer to activate C-H bonds. They catalyze the oxygenation of fatty acids at different omega positions. Here, two new, self-sufficient cytochrome P450s, named 'CYP102A15 and CYP102A170,' from polar Bacillus sp. PAMC 25034 and Paenibacillus sp. PAMC 22724,respectively, were cloned and expressed in E. coli. The genes are homologues of CYP102A1 from Bacillus megaterium. They catalyzed the hydroxylation of both saturated and unsaturated fatty acids ranging in length from C12-C20, with a moderately diverse profile compared to other members of the CYP102A subfamily. CYP102A15 exhibited the highest activity toward linoleic acid with Km 15.3 μM, and CYP102A170 showed higher activity toward myristic acid with Km 17.4 μM. CYP10A170 also hydroxylated the Eicosapentaenoic acid at ω-1 position only. Various kinetic parameters of both monooxygenases were also determined.

A Multisegmented Polystyrene with pH-Cleavable Linkages

  • Kang, Tae-Hyeon;Lee, Hyung-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2694-2698
    • /
    • 2014
  • A multisegmented polystyrene (PS) with pH-cleavable ester and carbamate linkages was successfully synthesized by a combination of atom transfer radical polymerization (ATRP) and Cu(I)-catalyzed 1,3-dipolar cycloaddition of azide and alkynes (click chemistry). ATRP was employed to synthesize polystyrene from hydroxyl-terminated initiator using CuBr/N,N,N',N",N"-pentamethyldiethylenetriamine (PMDETA) as the catalyst. The reaction of the resulting PS with sodium azide yielded the azido-terminated polymer. The hydroxyl group in the other end of the polymer was reacted with 4-nitrophenyl chloroformate (NPC), followed by reaction with propargylamine to produce an alkyne end group with a carbamate linkage. The PS with an alkyne group in one end and an azide group in the other end was then self-coupled in the presence of CuBr/2,2'-bipyridyl (bpy) in DMF to yield a desired multisegmented PS. Molecular weight and molecular weight distribution of the self-coupled polymer increased with time, as in the typical step-growth-type polymerization processes. Finally, we demonstrated that the ester and carbamate linkages of the multisegmented PS were hydrolyzed in the presence of HCl to yield individual PS chains.

Evaluating Early Age Shrinkage Behavior of Ultra High Performance Cementitious Composites (UHPCC) with CSA Expansive Admixture and Shrinkage Reducing Agent (CSA계 팽창재 및 수축 저감제의 혼입에 따른 UHPCC의 초기 수축 거동 평가)

  • Yoo, Doo-Yeol;Park, Jung-Jun;Kim, Sung-Wook;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.441-448
    • /
    • 2011
  • In this study, experimental tests of chemical and autogenous shrinkage were performed to evaluate the early age shrinkage behaviors of ultra high performance cementitious composites (UHPCC) with various replacement ratios of silica fume (SF), shrinkage reducing agent (SRA), expansive admixture (EA), and superplasticizer (SP). Starting time of self-desiccation, was analyzed by comparing the setting times and the deviated point of chemical and autogenous shrinkage strains. The test results indicated that both SF and SRA augment the early age chemical shrinkage, whereas SP delays the hydration reaction between cement particles and water, and reduces chemical shrinkage. About 49% of autogenous shrinkage was depleted by synergetic effect of SRA and EA. The hardening of UHPCC was catalyzed by containing EA. Self-desiccation of UHPCC occurred prior to the initial setting due to the high volume fraction of fibers and low water-binder ratio (W/B).

Suppression of the Methyl Radical Loss from Acetone Cation within (CH3COCH3)n{CH3COCH3}+ Clusters

  • Lee, Yong-Hoon;Oh, Myoung-Kyu;Choi, Sung-Chul;Ko, Do-Kyeong;Lee, Jong-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.8
    • /
    • pp.1519-1524
    • /
    • 2008
  • We have investigated the photophysics of the acetone radical cation in the vacuum ultraviolet energy region by multiphoton ionization combined with time-of-flight mass spectrometry in a cluster beam. We have found that the loss of methyl radical from the acetone radical cations is remarkably suppressed at 10.5 eV when they are solvated by a few neutral acetone molecules. The cluster ion mass spectra obtained by nanosecond and picosecond laser pulses reveal that there are intermolecular processes, occurring in several tens of picoseconds, which are responsible for the survival of the acetone cations in clusters. This remarkable solvation effect on the yield of the methyl radical loss from the acetone cation can be rationalized by the intracluster vibrational energy redistribution and the self-catalyzed enolization which compete with the methyl radical loss process.

Chemistry of persulfates for the oxidation of organic contaminants in water

  • Lee, Changha;Kim, Hak-Hyeon;Park, Noh-Back
    • Membrane and Water Treatment
    • /
    • v.9 no.6
    • /
    • pp.405-419
    • /
    • 2018
  • Persulfates (i.e., peroxymonosulfate and peroxydisulfate) are capable of oxidizing a wide range of organic compounds via direct reactions, as well as by indirect reactions by the radical intermediates. In aqueous solution, persulfates undergo self-decomposition, which is accelerated by thermal, photochemical and metal-catalyzed methods, which usually involve the generation of various radical species. The chemistry of persulfates has been studied since the early twentieth century. However, its environmental application has recently gained attention, as persulfates show promise in in situ chemical oxidation (ISCO) for soil and groundwater remediation. Persulfates are known to have both reactivity and persistence in the subsurface, which can provide advantages over other oxidants inclined toward either of the two properties. Besides the ISCO applications, recent studies have shown that the persulfate oxidation also has the potential for wastewater treatment and disinfection. This article reviews the chemistry regarding the hydrolysis, photolysis and catalysis of persulfates and the reactions of persulfates with organic compounds in aqueous solution. This article is intended to provide insight into interpreting the behaviors of the contaminant oxidation by persulfates, as well as developing new persulfate-based oxidation technologies.

Application of Polyaniline to an Enzyme-Amplified Electrochemical Immunosensor as an Electroactive Report Molecule

  • Kwon, Seong-Jung;Seo, Myung-Eun;Yang, Hae-Sik;Kim, Sang-Youl;Kwak, Ju-Hyoun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3103-3108
    • /
    • 2010
  • Conducting polymers (CPs) are widely used as matrixes for the entrapment of enzymes in analytical chemistry and biosensing devices. However, enzyme-catalyzed polymerization of CPs is rarely used for immunosensing due to the difficulties involved in the quantitative analysis of colloidal CPs in solution phase. In this study, an enzyme-amplified electrocatalytic immunosensor employing a CP as a redox marker has been developed. A polyanionic polymer matrix, $\alpha$-amino-$\omega$-thiol terminated poly(acrylic acid), was employed for precipitation of CP. The acrylic acid group acts as a polyanionic template. The thiol terminus of the polymer was used to produce self-assembled monolayers (SAMs) on Au electrodes and the amine terminus was employed for immobilization of biomolecules. In an enzymeamplified sandwich type immunosensor, the polyaniline (PANI) produced enzymatically is attracted by the electrostatic force of the matrix polymer. The precipitated PANI was characterized by electrochemical methods.

Catalytic Biofilms on Structured Packing for the Production of Glycolic Acid

  • Li, Xuan Zhong;Hauer, Bernhard;Rosche, Bettina
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.195-204
    • /
    • 2013
  • While structured packing modules are known to be efficient for surface wetting and gas-liquid exchange in abiotic surface catalysis, this model study explores structured packing as a growth surface for catalytic biofilms. Microbial biofilms have been proposed as selfimmobilized and self-regenerating catalysts for the production of chemicals. A concern is that the complex and dynamic nature of biofilms may cause fluctuations in their catalytic performance over time or may affect process reproducibility. An aerated continuous trickle-bed biofilm reactor system was designed with a 3 L structured packing, liquid recycling and pH control. Pseudomonas diminuta established a biofilm on the stainless steel structured packing with a specific surface area of 500 $m^2m^{-3}$ and catalyzed the oxidation of ethylene glycol to glycolic acid for over two months of continuous operation. A steady-state productivity of up to 1.6 $gl^{-1}h^{-1}$ was achieved at a dilution rate of 0.33 $h^{-1}$. Process reproducibility between three independent runs was excellent, despite process interruptions and activity variations in cultures grown from biofilm effluent cells. The results demonstrate the robustness of a catalytic biofilm on structured packing, despite its dynamic nature. Implementation is recommended for whole-cell processes that require efficient gas-liquid exchange, catalyst retention for continuous operation, or improved catalyst stability.

Chemoenzymatic Synthesis of H-shaped Amphiphilic Pentablock Copolymer and Its Self-assembly Behavior (H-형태 양친매성 펜타블록 공중합체의 화학효소적 합성과 자기회합거동 평가)

  • Chen, Peng;Li, Ya-Peng;Li, Cai-Jin;Meng, Xin-Lei;Zhang, Bao;Zhu, Ming;Liu, Yan-Jing;Wang, Jing-Yuan
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.332-341
    • /
    • 2013
  • H-shaped amphiphilic pentablock copolymers $(PSt)_2-b-PCL-b-PEO-b-PCL-b-(PSt)_2$ was synthesized via chemoenzymatic method by combining enzyme-catalyzed ring-opening polymerization (eROP) of ${\varepsilon}$-caprolactone (${\varepsilon}$-CL) and atom transfer radical polymerization (ATRP) of styrene. By this process, we obtained copolymers with controlled molecular weight and low polydispersity. The structure and composition of the obtained copolymers were characterized by nuclear magnetic resonance (NMR), gel permeation chromatography (GPC) and infrared spectroscopy analysis (IR). The crystallization behavior of the copolymers was analyzed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The crystallization behavior of the H-shaped block copolymers demonstrated a PCL dominate crystallization. The self-assembly behavior of the copolymers was investigated in aqueous media. The hydrodynamic diameters of the copolymer micelles in aqueous solution were measured by dynamic light scattering (DLS). The morphology of the copolymer micelles was observed by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The hydrodynamic diameters of spherical micelles declined gradually with the increase of the hydrophobic chain lengths of the copolymers. The critical micelle concentration (CMC) values were determined from fluorescence emission, and it was found that the CMCs decreased with an increase of PSt hydrophobic block lengths.

Growth and Characterization of Self-catalyed GaAs Nanowires on Si(111) for Low Defect Densities

  • Park, Dong-U;Ha, Jae-Du;Kim, Yeong-Heon;O, Hye-Min;Kim, Jin-Su;Kim, Jong-Su;Jeong, Mun-Seok;No, Sam-Gyu;Lee, Sang-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.291-291
    • /
    • 2011
  • 1차원 반도체인 nanowires (NWs)는 전기적, 광학적으로 일반 bulk구조와 다른 특성을 가지고 있어서 현재 많은 연구가 되고 있다. 일반적으로 NWs는 Au 등의 금속 촉매를 이용하여 성장을 하게 되는데 이때 촉매가 오염물로 작용을 해서 결함을 만들어서 bandgap내에 defect level을 형성하게 된다. 본 연구는 Si(111) 기판 위에 Ga-droplet을 촉매로 사용을 하여 molecular beam epitaxy로 성장을 하였다. 성장온도는 600$^{\circ}C$로 고정을 하였고 growth rate은 GaAs(100) substrate에서 2.5 A/s로 Ga의 양을 고정하고 V/III ratio를 1부터 8까지 변화를 시켰다. As의 양에 따라서 생성되는 NWs의 개수가 증가하고 growth rate이 빨라지는 것을 확인할 수 있었다. Transmission Electron Microscopy 분석 결과 낮은 V/III ratio에서는 zincblende, wurtzite 그리고 stacking faults 가 혼재 되어 있는 것을 확인 할 수 있었다. 이러한 결함은 소자를 만드는데 한계가 있기 때문에 pure zincblende나 pure wurtzite를 가져야 하는데 V/III ratio : 8 에서 pure zincblende구조가 되었다. Gibbs-Thomson effect에 따르면 구조적 변화는 Ga droplet과 NWs의 접면에서 크기가 중요한 역할을 한다[1]. 연구 결과 V/III ratio : 8일 때 Ga droplet의 크기가 zincblende성장에 알맞다는 것을 예상할 수 있었다. laser confocal photoluminescence 결과 상온에서 1.43 eV의 bandgap을 가지는 bulk구조와는 다른 와 1.49eV의 bandgap을 가지는 것을 확인하였다.

  • PDF