• Title/Summary/Keyword: self-adaptive systems

Search Result 177, Processing Time 0.034 seconds

Self-Adaptive Performance Improvement of Novel SDD Equalization Using Sigmoid Estimate and Threshold Decision-Weighted Error (시그모이드 추정과 임계 판정 가중 오차를 사용한 새로운 SDD 등화의 자기적응 성능 개선)

  • Oh, Kil Nam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.17-22
    • /
    • 2016
  • For the self-adaptive equalization of higher-order QAM systems, this paper proposes a new soft decision-directed (SDD) algorithm that opens the eye patterns quickly as well as significantly reducing the error level in the steady-state when it is applied to the initial equalization stage with completely closed eye patterns. The proposed method for M-QAM application minimized the computational complexity of the existing SDD by the symbol estimated based on the two symbols closest to the observation, and greatly simplified the soft decision independently of the QAM order. Furthermore, in the symbol estimating it increased the reliability of the estimates by applying the superior properties of the sigmoid function and avoiding the erroneous estimation of the threshold function. In addition, the initialization performance was improved when an error is generated to update the equalizer, weighting the symbol decision by the threshold function to the error, resulting in an extension of the range of error fluctuations. As a result, the proposed method improves remarkably the computational complexity and the properties of initialization and convergence of the traditional SDD. Through simulations for 64-QAM and 256-QAM under multipath channel conditions with additive noise, the usefulness of the proposed methods was confirmed by comparing the performance of the proposed 2-SDD and two forms of weighted 2-SDD with CMA.

Validation of the effectiveness of AI-Based Personalized Adaptive Learning: Focusing on basic math class cases (인공지능(AI) 기반 맞춤형 학습의 효과검증: 기초 수학수업 사례 중심으로)

  • Eunae Burm;Yeol-Eo Chun;Ji Youn Han
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.3
    • /
    • pp.35-43
    • /
    • 2023
  • This study tried to find out the applicability and effectiveness of the AI-based adaptive learning system in university classes by operating an AI-based adaptive learning system on a pilot basis. To this end, an AI-based adaptive learning system was applied to analyze the operation results of 42 learners who participated in basic mathematics classes, and a survey and in-depth interviews were conducted with students and professors. As a result of the study, the use of an AI-based customized learning system improved students' academic achievement. Both instructors and learners seem to contribute to improving learning performance in basic concept learning, and through this, the AI-based adaptive learning system is expected to be an effective way to enhance self-directed learning and strengthen knowledge through concept learning. It is expected to be used as basic data related to the introduction and application of basic science subjects for AI-based adaptive learning systems. In the future, we suggest a strategy study on how to use the analyzed data and to verify the effect of linking the learning process and analyzed data provided to students in AI-based customized learning to face-to-face classes.

Application of Adaptive Control Theory to Nuclear Reactor Power Control (적응제어 기법을 이용한 원자로 출력제어)

  • Ha, Man-Gyun
    • Nuclear Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.336-343
    • /
    • 1995
  • The Self Tuning Regulator(STR) method which is an approach of adaptive control theory, is ap-plied to design the fully automatic power controller of the nonlinear reactor model. The adaptive control represent a proper approach to design the suboptimal controller for nonlinear, time-varying stochastic systems. The control system is based on a third­order linear model with unknown, time-varying parameters. The updating of the parameter estimates is achieved by the recursive extended least square method with a variable forgetting factor. Based on the estimated parameters, the output (average coolant temperature) is predicted one-step ahead. And then, a weighted one-step ahead controller is designed so that the difference between the output and the desired output is minimized and the variation of the control rod position is small. Also, an integral action is added in order to remove the steady­state error. A nonlinear M plant model was used to simulate the proposed controller of reactor power which covers a wide operating range. From the simulation result, the performances of this controller for ramp input (increase or decrease) are proved to be successful. However, for step input this controller leaves something to be desired.

  • PDF

Automatic Extraction of Lean Tissue for Pork Grading

  • Cho, Sung-Ho;Huan, Le Ngoc;Choi, Sun;Kim, Tae-Jung;Shin, Wu-Hyun;Hwang, Heon
    • Journal of Biosystems Engineering
    • /
    • v.39 no.3
    • /
    • pp.174-183
    • /
    • 2014
  • Purpose: A robust, efficient auto-grading computer vision system for meat carcasses is in high demand by researchers all over the world. In this paper, we discuss our study, in which we developed a system to speed up line processing and provide reliable results for pork grading, comparing the results of our algorithms with visual human subjectivity measurements. Methods: We differentiated fat and lean using an entropic correlation algorithm. We also developed a self-designed robust segmentation algorithm that successfully segmented several porkcut samples; this algorithm can help to eliminate the current issues associated with autothresholding. Results: In this study, we carefully considered the key step of autoextracting lean tissue. We introduced a self-proposed scheme and implemented it in over 200 pork-cut samples. The accuracy and computation time were acceptable, showing excellent potential for use in online commercial systems. Conclusions: This paper summarizes the main results reported in recent application studies, which include modifying and smoothing the lean area of pork-cut sections of commercial fresh pork by human experts for an auto-grading process. The developed algorithms were implemented in a prototype mobile processing unit, which can be implemented at the pork processing site.

CutPaste-Based Anomaly Detection Model using Multi Scale Feature Extraction in Time Series Streaming Data

  • Jeon, Byeong-Uk;Chung, Kyungyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2787-2800
    • /
    • 2022
  • The aging society increases emergency situations of the elderly living alone and a variety of social crimes. In order to prevent them, techniques to detect emergency situations through voice are actively researched. This study proposes CutPaste-based anomaly detection model using multi-scale feature extraction in time series streaming data. In the proposed method, an audio file is converted into a spectrogram. In this way, it is possible to use an algorithm for image data, such as CNN. After that, mutli-scale feature extraction is applied. Three images drawn from Adaptive Pooling layer that has different-sized kernels are merged. In consideration of various types of anomaly, including point anomaly, contextual anomaly, and collective anomaly, the limitations of a conventional anomaly model are improved. Finally, CutPaste-based anomaly detection is conducted. Since the model is trained through self-supervised learning, it is possible to detect a diversity of emergency situations as anomaly without labeling. Therefore, the proposed model overcomes the limitations of a conventional model that classifies only labelled emergency situations. Also, the proposed model is evaluated to have better performance than a conventional anomaly detection model.

Recent trends in advanced flight control

  • Kanai, Kimio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.24.1-24
    • /
    • 1996
  • The development of future aircraft that involves the expanded flight envelop will place increased performance requirements on the design of the flight control system. Maneuvering areas are expanding into flight envelopes characterized by significantly larger levels of modeling uncertainty than encountered in present flight control designs. Conventional flight control techniques that ignore the effects of large parameter variations, modeling uncertainties and nonlinearities, will likely produce designs with poor performance and robustness. Recent advances in modern control theories called advanced control theories, most notably the H$\_$.inf./ synthesis technique, adaptive control and neural network application, offer the promise of a design technique that can produce both high performance and robust controllers for next generation aircraft. This special lecture will survey the recent development in advanced flight control and review the possible application of advanced control theories.

  • PDF

Immune Algorithms Based 2-DOF Controller Design and Tuning For Power Stabilizer

  • Kim, Dong-Hwa;Park, Jin-Ill
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2278-2282
    • /
    • 2003
  • In this paper the structure of 2-DOF controller based on artificial immune network algorithms has been suggested for nonlinear system. Up to present time, a number of structures of the 2-DOF controllers are considered as 2-DOF (2-Degrees Of Freedom) control functions. However, a general view is provided that they are the special cases of either the state feedback or the modification of PID controllers. On the other hand, the immune network system possesses a self organizing and distributed memory, also it has an adaptive function by feed back law to its external environment and allows a PDP (parallel distributed processing) network to complete patterns against the environmental situation, since antibody recognizes specific antigens which are the foreign substances that invade living creatures. Therefore, it can provide optimal solution to external environment. Simulation results by immune based 2-DOF controller reveal that immune algorithm is an effective approach to search for 2-DOF controller.

  • PDF

Impelmentation of 2-DOF Controller Using Immune Algorithms

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1531-1536
    • /
    • 2003
  • In this paper the structure of 2-DOF controller based on artificial immune network algorithms has been suggested for nonlinear system. Up to present time, a number of structures of the 2-DOF controllers are considered as 2-DOF (2-Degrees Of Freedom) control functions. However, A general view is provided that they are the special cases of either the state feedback or the modification of PID controllers. On the other hand, The immune network system possesses a self organizing and distributed memory, also it has an adaptive function by feed back law to its external environment and allows a PDP (parallel distributed processing) network to complete patterns against the environmental situation, since antibody recognizes specific antigens which are the foreign substances that invade living creatures. Therefore, it can provide optimal solution to external environment. Simulation results by immune based 2-DOF controller reveal that immune algorithm is an effective approach to search for 2-DOF controller.

  • PDF

Development of tool condition monitoring system using unsupervised learning capability of the ART2 network

  • Choii, Gi-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1570-1575
    • /
    • 1991
  • The feasibility of using an adaptive resonance network (ART2) with unsupervised learning capability for too] wear detection in turning operations is investigated. Specifically, acoustic emission (AE) and cutting force signals were measured during machining, the multichannel AR coefficients of the two signals were calculated and then presented to the network to make a decision on tool wear. If the presented features are significantly different from previously learned patterns associated with a fresh tool, the network will recognize the difference and form a new category m worn tool. The experimental results show that tool wear can be effectively detected with or without minimum prior training using the self-organization property of the ART2 network.

  • PDF

A SURVEY OF QUALITY OF SERVICE IN MULTI-TIER WEB APPLICATIONS

  • Ghetas, Mohamed;Yong, Chan Huah;Sumari, Putra
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.238-256
    • /
    • 2016
  • Modern web services have been broadly deployed on the Internet. Most of these services use multi-tier architecture for flexible scaling and software reusability. However, managing the performance of multi-tier web services under dynamic and unpredictable workload, and different resource demands in each tier is a critical problem for a service provider. When offering quality of service assurance with least resource usage costs, web service providers should adopt self-adaptive resource provisioning in each tier. Recently, a number of rule- and model-based approaches have been designed for dynamic resource management in virtualized data centers. This survey investigates the challenges of resource provisioning and provides a competing assessment on the existing approaches. After the evaluation of their benefits and drawbacks, the new research direction to improve the efficiency of resource management and recommendations are introduced.