• 제목/요약/키워드: self organizing neural network

검색결과 222건 처리시간 0.029초

자기조직형 신경망 이론을 이용한 국도 통행시간 추정 알고리즘 (Development of Travel Time Estimation Algorithm for National Highway by using Self-Organizing Neural Networks)

  • 도명식;배현숙
    • 대한토목학회논문집
    • /
    • 제28권3D호
    • /
    • pp.307-315
    • /
    • 2008
  • 본 연구의 목적은 수도권 남부 국도 ITS 시범구간인 국도 3호선의 장지IC~곤지암IC구간에서 수집되는 교통자료를 기반으로 자기조직형 신경망 이론을 도입하여 국도구간의 통행시간 추정모형을 개발하는 방안을 제시하는 것이다. 지점 검지기 적정 설치위치와 구간의 연장 및 연도의 토지이용특성이 단속류의 구간통행시간에 영향을 미침을 확인하였으며, 구간 통행시간 추정을 위해 기존의 인공신경망 모형이 가지는 추가학습이 불가능하다는 단점과 신경망 구조의 최적구성이 어려운 점 등을 고려하여 자기조직형 인공신경망 구조방법을 도입하였다. 통행시간 추정결과 기존 검지기에서 수집된 자료와 최적위치에서 수집된 자료를 이용하여 모형을 검증한 결과 통행특성을 가장 잘 반영하는 지점자료를 활용한 모형의 추정력이 우수한 것으로 나타났다. 이러한 시도는 향후 국도 ITS 사업의 설계에서 검지기의 설치 위치 선정에 응용할 수 있을 것으로 기대된다.

자기구성 신경회로망을 이용한 매니플레이터의 궤적제어에 관한 연구 (The Study on the Trajectory Control of Manipulator Using Self-Organizing Neural Network)

  • 김동희;신위재;주창복
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2001년도 하계 학술대회 논문집(KISPS SUMMER CONFERENCE 2001
    • /
    • pp.145-148
    • /
    • 2001
  • 본 논문에서는 자기구성 신경회로망을 이용하여 3축 매니퓰레이터의 궤적제어기를 설계한다. 궤적 제어는 경유점을 정하고 각 경유점에 대한 역기구학을 적용하는 제어기로서 본 논문에서는 역기구학의 해를 자기구성 신경회로망을 통해 해결하는 제어기를 설계하고자 한 다. 또한 제어기에서의 은닉층의 활성화 함수는 가우 시안 함수를 사용하고, 은닉층의 파라미터는 오차를 기초로 하여 자동적으로 최적의 파라미터 값을 구함으로 서 유연한 궤적 제어가 되도록 한다.

  • PDF

PSD 및 역전파 알고리즘를 이용한 AMI 로봇의 제어 시스템 설계 (Design of AMI Robot Control System Using PSD and Back Propagation Algorithm)

  • 이재욱;서운학;김휘동;이희섭;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.393-398
    • /
    • 2002
  • Neural networks are used in the framework of sensorbased tracking control of robot manipulators. They learn by practice movements the relationship between PSD (an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. forthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple backpropagation networks one of which is selected according to which division (corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very training and processing implementation required for real time control.

  • PDF

Recognize Handwritten Urdu Script Using Kohenen Som Algorithm

  • Khan, Yunus;Nagar, Chetan
    • International Journal of Ocean System Engineering
    • /
    • 제2권1호
    • /
    • pp.57-61
    • /
    • 2012
  • In this paper we use the Kohonen neural network based Self Organizing Map (SOM) algorithm for Urdu Character Recognition. Kohenen NN have more efficient in terms of performance as compare to other approaches. Classification is used to recognize hand written Urdu character. The number of possible unknown character is reducing by pre-classification with respect to subset of the total character set. So the proposed algorithm is attempt to group similar character. Members of pre-classified group are further analyzed using a statistical classifier for final recognition. A recognition rate of around 79.9% was achieved for the first choice and more than 98.5% for the top three choices. The result of this paper shows that the proposed Kohonen SOM algorithm yields promising output and feasible with other existing techniques.

A Study of Building B2B EC Business Model for Shipping Industry Using Expert System

  • Yu, Song-Jin
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2005년도 춘계학술대회 논문집
    • /
    • pp.457-463
    • /
    • 2005
  • The use of the internet to facilitate commerce among companies promises vast benefits. Lots of e-marketplaces are building for several industries such as chemistry, airplane, and automobile industries. This study proposed new B2B EC business model for the shipping industry which concerns relatively massive fixed assets to be fully utilized. To be successful the proposed model gives participants to support useful information. To do this the expert system is constructed as the hybrid prediction system of neural network (NN) and memory based reasoning (MBR) with self-organizing map (SOM) and knowledge augmentaton technique using qualitative reasoning (QR). The expert system supports participants useful information coping with dynamic market environment. with this transportation companies are induced to participate in the proposed e-marketplace and helped for exchanges easily. Also participants would utilize their assets fully through B2B exchanges.

  • PDF

PSD 및 역전파 알고리즘를 이용한 AM1 로봇의 제어 시스템 설계 (Design of AM1 Robot Control System Using PSD and Back Propagation Algorithm)

  • 이재욱;서운학;이종붕;이희섭;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.239-243
    • /
    • 2001
  • Neural networks are used in the framework of sensorbased tracking control of robot manipulators. They learn by practice movements the relationship between PSD (an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. Furthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple backpropagation networks one of which is selected according to which division (corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very training and processing implementation required for real time control.

  • PDF

역전파 알고리즘 및 PSD를 이용한 로봇의 결실제어 (Robust control of industrial robot using back propagation algorithm and PSD)

  • 이재욱
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.171-175
    • /
    • 2000
  • Neural networks are in the framework of sensorbased tracking control of robot manipulators. They learn by practice movements the relationship between PSD (an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. Furthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple backpropagation networks one of which is selected according to which division (corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very training and processing implementation required for real time control.

  • PDF

스트링과 수정된 SOFM을 이용한 이동로봇의 전역 경로계획 (Global Path Planning of Mobile Robot Using String and Modified SOFM)

  • 차영엽
    • 한국정밀공학회지
    • /
    • 제25권4호
    • /
    • pp.69-76
    • /
    • 2008
  • The self-organizing feature map(SOFM) among a number of neural network uses a randomized small valued initial weight vectors, selects the neuron whose weight vector best matches input as the winning neuron, and trains the weight vectors such that neurons within the activity bubble are moved toward the input vector. On the other hand, the modified method in this research uses a predetermined initial weight vectors of the 1-dimensional string, gives the systematic input vector whose position best matches obstacles, and trains the weight vectors such that neurons within the activity bubble are move toward the opposite direction of input vector. According to simulation results one can conclude that the method using string and the modified neural network is useful tool to mobile robot for the global path planning.

PSD 및 역전파 알고리즘을 이용한 산업용 로봇의 제어 시스템 설계 (Design of Industrial Robot Control System Using PSD and Back Propagation Algorithm)

  • 이재욱;이희섭;김휘동;김재실;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 추계학술대회논문집 - 한국공작기계학회
    • /
    • pp.108-112
    • /
    • 2000
  • Neural networks are used in the framework of sensorbased tracking control of robot manipulators. They learn by practice movements the relationship between PSD (an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. Furthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple backpropagation networks one of which is selected according to which division (corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very training and processing implementation required for real time control.

  • PDF

시스템잡음에 강건한 SOM-TVC 기법을 이용한 근전도 패턴 인식에 관한 연구 (A Study on the EMG Pattern Recognition Using SOM-TVC Method Robust to System Noise)

  • 김인수;이진;김성환
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권6호
    • /
    • pp.417-422
    • /
    • 2005
  • This paper presents an EMG pattern classification method to identify motion commands for the control of the artificial arm by SOM-TVC(self organizing map - tracking Voronoi cell) based on neural network with a feature parameter. The eigenvalue is extracted as a feature parameter from the EMG signals and Voronoi cells is used to define each pattern boundary in the pattern recognition space. And a TVC algorithm is designed to track the movement of the Voronoi cell varying as the condition of additive noise. Results are presented to support the efficiency of the proposed SOM-TVC algorithm for EMG pattern recognition and compared with the conventional EDM and BPNN methods.