Self-Oranizing Map(SOM) is an unsupervised neural network providing cluster analysis of high dimensional input data. The output from the SOM is represented in map that help us to explore data. The weak point of conventional SOM is when the map is large, it take a long time to train the data. The computing time is known to be O(MN) for trainning to find the winning node (M,N are the number of nodes in width and height of the map). This paper presents a new method to reduce the computing time by creating new map. Each node in a new map is the centroid of nodes' group that are in the original map. After create a new map, we find the winning node of this map, then find the winning node in original map only in nodes that are represented by the winning node from the new map. This new method is called "High Speed Self-Oranizing Map"(HS-SOM). Our experiment use HS-SOM to cluster documents and compare with SOM. The results from the experiment shows that HS-SOM can reduce computing time by 30%-50% over conventional SOM.
Fuzzy theory has shown good control performance for non-linear system that is difficult to be controlled by the conventional controller. Backpropagation neural network can interpolate output without the priori knowledge of its dynamics. In this paper, we proposes a Fuzzy-Neural Controller. The Fuzzy Control by deterministic rule may not be sensitive for uncertain conditions and has a disadvantage of setting the rule by repeatedly experience. To solve such problems, we construct Self organizing Fuzzy-Neural Controller which can reorganize the fuzzy rule according to the state of system. Experimental results show that proposed Fuzzy-Neural Controller has better performance than conventional controller(PID) has especially rising time and overshoot characteristics.
본 논문에서는 경쟁학습 신경회로망의 디지탈 칩 구현에서 뉴런의 집적도를 향상시키기 위해 하드웨어 구현이 용이한 새로운 신경회로망 모델로서 일정 적응이득과 이진 강화함수를 가진 여러 가지 경쟁학습 신경회로망 모델들을 제안하고, 그 중 안정성과 분류성능이 가장 우수한 일정 적응이득과 이진 강화함수를 지닌 자기조직화 형상지도(Self-Organizing Feature Map)신경회로망의 FPGA위에서의 하드웨어 구현에 대해서 논한다. 원래의 SOFM 알고리즘에서 적응이득이 시간 종속형인데 반하여, 본 논문에서 하드웨어로 구현한 알고리즘에서는 적응이득이 일정인 값으로 고정되며 이로 인한 성능저하를 보상하기 위하여 이진 강화함수를 부가한다. 제안한 알고리즘은 복잡한 곱셈 연산을 필요로 하지 않으므로 하드웨어 구현이 용이하다는 특징이있다. 1개의 덧셈/뺄셈기와 2개의 덧셈기로 구성된 단위 뉴런은 형태가 단순하면서 반복적이므로 하나의 FPGA 위에서도 다수의 뉴런을 구현 할수 있으며 비교적 소수의 제어신호로서 이들을 모두 제어 가능할 수 있도록 설계하였다.실험 결과 각 구서부분은 모두 이상 없이 올바로동작하였으며 각 부분이 모두 종합된 전체 시스템도 이상 없이 동작함을 알 수 있었다.
전자 출결 시스템(Electronic attendance-absence recording system)은 오프라인의 교실 수업 방식에 있어서 혼합 학습(Blended learning)을 위한 중요한 강의 지원 시스템 가운데 하나이다. 그러나 기존의 스마트카드 기반의 전자 출결 시스템은 카드 소유자의 실제 본인 유무를 파악하는 것은 불가능하다. 따라서 본 논문에서는 개인의 얼굴 정보를 자기조직화 신경회로망으로 인식하여 자동으로 해당 교과목의 출석상황을 관리하는 클라이언트-서버 시스템을 개발한다. 클라이언트 시스템은 얼굴 특징추출에 의한 식별파일을 생성하고, 서버 시스템에서는 클라이언트 시스템에서 전송된 식별 파일(ID file)을 분석하여 데이터베이스에 저장된 해당 교과목의 인식 가중치 파일(Recognized weight file)를 이용하여 학생 식별을 수행한다. 본 논문에서 제안하는 얼굴 인식 기반의 출결 관리 시스템은 실제 학급의 다양한 얼굴 영상을 이용하여 CS 환경에서 실험한 결과 92% 이상의 유효성을 보였다.
본 연구는 우리나라 서해안에서 월동하는 수조류 군집의 특성 및 환경요인에 따른 분포 특성을 밝히고자 수행되었다. 수조류 군집조사는 10개 지역에서 실시되었으며, 환경요인으로 토지피복도 비율을 측정하였다. 전체 조사지역에서 종 구성은 수면성 오리류가 84%로 가장 높은 비율을 나타냈고, 그 외 잠수성 오리류, 섭금류, 기러기류, 갈매기류 등이 많이 관찰되었다. 가장 높은 우점도를 나타낸 종은 청둥오리(Anas platyrhynchos)였으며 다음으로 가창오리(Anas formosa)가 차지하였다. 비지도 학습법 인공신경회로망인 self-organizing map(SOM)을 이용한 월동 수조류 군집을 유형화 한 결과 수조류 군집은 6개의 그룹으로 구분되었다. 각 그룹은 서식지의 특성에 따라 명확히 구분되어 서식지의 공간특성을 잘 반영해 주었으며, 또한 조사 시기에 따른 군집의 차이도 잘 나타내 주었다.
본 논문에서는 underutilization 문제를 해결한 퍼지 신경회로망 모델을 제시한다. 이 퍼지 신경 회로망은 ART-1 신경회로망과 유사한 제어 구조를 가지고 있어 유연성이 있으면서도 안정성이 있다. 또한 연결강도의 초기화가 필요 없고 ART-1 신경회로망에 비하여 잡음에 민감하지 않다. 이 퍼지 신경회로망의 학습법칙은 코호넨의 학습법칙을 변형하고 퍼지화 하였으며 누설 경쟁학습의 퍼지화와 조건 확률의 퍼지화에 기반을 두고 있다. 출력 뉴런 중에서 승자를 정한 후에 행해지는 점검 테스트에서는 유사척도로 상대적 거리를 사용하였다. 이 상대적 거리는 유클리디안 거리와 함께 데이터와 클러스터들의 대푯값들 간의 상대적인 위치를 고려한 것이다. 본 논문에서 제안한 퍼지 신경회로망과 코호넨 자기 조직화 특징 지도의 성능을 비교하기 위하여 널리 사용되어온 IRIS 데이터와 가우시안 분포 데이터를 사용하였다.
The vibration signal can give an indication of the condition of rotating machinery, highlighting potential faults such as unbalance, misalignment and bearing defects. The features in the vibration signal provide an important source of information for the faults diagnosis of rotating machinery. When additional training data become available after the initial training is completed, the conventional neural networks (NNs) must be retrained by applying total data including additional training data. This paper proposes the fault diagnostics algorithm using the ART-Kohonen network which does not destroy the initial training and can adapt additional training data that is suitable for the classification of machine condition. The results of the experiments confirm that the proposed algorithm performs better than other NNs as the self-organizing feature maps (SOFM) , learning vector quantization (LYQ) and radial basis function (RBF) NNs with respect to classification quality. The classification success rate for the ART-Kohonen network was 94 o/o and for the SOFM, LYQ and RBF network were 93 %, 93 % and 89 % respectively.
본 논문에서는 산소 센서를 이용하여 CMAC 신경회로망 학습제어에 의한 차량의 연료분사 제어방법에 대해 논한다. 기본 차량 내연기관과 연료 분사 제어시스템의 동역학적인 비선형성으로 인하여 불연속적인 연로를 분사한다. 정밀 연료 분사량 제어에 어려움을 발생시키기 때문에 엔진성능은 저하된다. 본 연구에서는 CMAC 신경회로망을 이용한 연료 분사시스템을 제안한다. CMAC 신경회로망은 매우 넓은 범위의 함수로부터 비선형 관계를 학습 할 수 있고, 학습이 빠르며, 수렴 특성을 가지고 있다. 그리고 산소 센서의 출력특성을 파악하여 연료분사 속도를 계산해서 설정된 공연비 값을 유지시켜준다. 게다가 기존 가솔린 엔진의 구조변경이 없이 어떤 상황에서도 공연비를 정밀하게 제어할 수 있으며, 배기가스 배출량을 절감시킬 수 있다. 시뮬레이션을 통해 일반적인 차량의 제어 방법과 비교 분석하였고, 제안된 방법이 차량의 연비 향상과 친환경 성능 등에 더 효과적임을 확인하였다.
An object recognition and restoration using ultrasound sensors and neural networks are presented. The planar arrangement of the sensor is used to reduce the interference effects between sensors. The SOFM(Self-Organizing Feature Map) Neural Network and SCL(Simple Competitive Learning) method are learned with the acquired data. Lab experiments were performed that the object can be recognized ed the resolutions of the object can be enhanced by using the small number of the ultrasound array and neural networks.
비지도 학습 신경망모형의 한 종류인 자기조직도(self-organizing map: SOM)는 고차원 자료를 차원축소하고 저차원지도를 통해 유사한 개체를 군집화하는 방법이며 다양한 분야의 데이터에 적용되고 있다. 한편 최소생성나무(minimal spanning tree: MST)는 개체점들을 닫힌 루프 없이 가장 짧게 선분으로 연결하는 그래프 방법이다. 본 연구에서는 부노드 자기조직도에 최소생성나무를 적용하여 부노드 간 거리를 근사적으로 나타내는 자료 시각화 방법과 자기조직도의 최적 형태와 크기를 결정하기 위한 거리 측도를 제안하였다. 또한 피서의 붓꽃자료와 실제 유전자발현자료 및 모의생성 자료에 적용하여 이 방법의 유용성을 살펴보았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.