• Title/Summary/Keyword: self organizing fuzzy controller

Search Result 61, Processing Time 0.022 seconds

Application of genetic algorithm to hybrid fuzzy inference engine (유전 알고리즘에 의한 Hybrid 퍼지 추론기의 구성)

  • 박세희;조현찬;이홍기;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.863-868
    • /
    • 1992
  • This paper presents a method on applying Genetic Algorithm(GA), which is a well-known high performance optimizing algorithm, to construct the self-organizing fuzzy logic controller. Fuzzy logic controller considered in this paper utilizes Sugeno's hybrid inference method, which has an advantage of simple defuzzification process in the inference engine. Genetic algorithm is used to find the optimal parameters in the FLC. The proposed approach will be demonstrated using 2 d.o.f robot manipulator to verify its effectiveness.

  • PDF

Application of Genetic Algorithm to Hybrid Fuzzy Inference Engine

  • Park, Sae-hie;Chung, Sun-tae;Jeon, Hong-tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.58-67
    • /
    • 1992
  • This paper presents a method on applying Genetric Algorithms(GA), which is a well-know high performance optimizing algorithm, to construct the self-organizing fuzzy logic controller. Fuzzy logic controller considered in this paper utilized Sugeno's hybrid inference method. which has an advantage of simple defuzzification process in the inference engine. Genetic algorithm is used to find the iptimal parameters in the FLC. The proposed approach will be demonstrated using 2 d. o. f robot manipulator to verify its effectiveness.

  • PDF

Position and Velocity Control of AM1 Robot Using Self-Organization Fuzzy Control Technology (자기구성 퍼지 제어기법에 의한 AM1 로봇의 위치 및 속도 제어)

  • 김종수;최석창;이종붕;김치원;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.550-555
    • /
    • 2002
  • In this paper, it is presented a new technique to the design and real-time implementation of fuzzy control system based-on digital signal processors in order to improve the precision and robustness for system of industrial robot. Fuzzy control has emerged as one of the most active and fruitful areas for research in the applications of fuzzy set theory, especially in the real of industrial processes. In this thesis, a self-organizing fuzzy controller or the industrial robot manipulator with a actuator located at the base is studied. A fuzzy logic composed of linguistic conditional statements is employed by defining the relations of input-output variable of the controller, In the synthesis of a FLC, one of the most difficult problems is the determination of linguistic control rules from the human operators. To overcome this difficult, SOFC is proposed for a hierarchical control structure consisting of basic level and high level that modify control rules.

  • PDF

Position and Velocity Control of AM1 Robot Using Self-Organization Fuzzy Control Technology (자기구성 퍼지 제어기법에 의한 AM1 로봇의 위치 및 속도 제어)

  • 김종수;이병국;최석창;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.202-207
    • /
    • 2001
  • In this paper, it is presented a new technique to the design and real-time implementation of fuzzy control system based-on digital signal processors in order to improve the precision and robustness for system of industrial robot. Fuzzy control has emerged as one of the most active and fruitful areas for research in the applications of fuzzy set theory, especially in the real of industrial processes. In this thesis, a self-organizing fuzzy controller for the industrial robot manipulator with a actuator located at the base is studied. A fuzzy logic composed of linguistic conditional statements is employed by defining the relations of input-output variable of the controller, In the synthesis of a FLC, one of the most difficult problems is the determination of linguistic control rules from the human operators. To overcome this difficult, SOFC is proposed for a hierarchical control structure consisting of basic level and high level that modify control rules.

  • PDF

Position and Velocity Control of AM1 Robot Using Self-Organization Fuzzy Control Technology (자기구성 퍼지 제어기법에 의한 수직다관절(AM1) 로봇의 위치 및 속도 제어)

  • 김종수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.165-170
    • /
    • 2000
  • In this paper, it is presented a new technique to the design and real-time implementation of fuzzy control system based-on digital signal processors in order to improve the precision and robustness for system of industrial robot. Fuzzy control has emerged as one of the most active and fruitful areas for research in the applications of fuzzy set theory, especially in the real of industrial processes. In this thesis, a self-organizing fuzzy controller for the industrial robot manipulator with a actuator located at the base is studied. A fuzzy logic composed of linguistic conditional statements is employed by defining the relations of input-output variable of the controller, in the synthesis of a FLC, one of the most difficult problems is the determination of linguistic control rules from the human operators. To overcome this difficult, SOFC is proposed for a hierachical control structure consisting of basic level and high level that modify control rules.

  • PDF

A Study on Intelligent Control of Robot Manipulator Using Self-Organization Fuzzy Control Technology (자기구성 퍼지 제어기법에 의한 로봇 매니퓰레이터의 지능제어에 관한 연구)

  • 김종수;김용태;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.193-198
    • /
    • 1999
  • In this paper, it is presented a new technique to the design and real-time implementation of fuzzy control system based-on digital signal processors in order to improve the precision and robustness for system of industrial robot. Fuzzy control has emerged as one of the most active and fruitful areas for research in the applications of fuzzy set theory, especially in the real of industrial processes. In this thesis, a self-organizing fuzzy controller for the industrial robot manipulator with a actuator located at the base is studied. A fuzzy logic composed of linguistic conditional statements is employed by defining the relations of input-output variable of the controller, In the synthesis of a FLC, one of the most difficult problems is the determination of linguistic control rules from the human operators. To overcome this difficult, SOFC is proposed for a hierarchical control structure consisting of basic level and high level that modify control rules.

  • PDF

Fuzzy iterative learning controller for dynamic plants (퍼지 반복 학습제어기를 이용한 동적 플랜트 제어)

  • 유학모;이연정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.499-502
    • /
    • 1996
  • In this paper, we propose a fuzzy iterative learning controller(FILC). It can control fully unknown dynamic plants through iterative learning. To design learning controllers based on the steepest descent method, it is one of the difficult problems to identify the change of plant output with respect to the change of control input(.part.e/.part.u). To solve this problem, we propose a method as follows: first, calculate .part.e/.part.u using a similarity measure and information in consecutive time steps, then adjust the fuzzy logic controller(FLC) using the sign of .part.e/.part..u. As learning process is iterated, the value of .part.e/.part.u is reinforced. Proposed FILC has the simple architecture compared with previous other controllers. Computer simulations for an inverted pendulum system were conducted to verify the performance of the proposed FILC.

  • PDF

Autonomous Guided Vehicle Using Self-Organizing Fuzzy Controller (자기 조직화 퍼지 제어기를 적용한 자율 운송 장치)

  • Na, Yeong-Nam;Lee, Yun-Bae
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.4
    • /
    • pp.1160-1168
    • /
    • 2000
  • Due to the increase in importance of factory-automation (FA) in the field of production, the importance of he autonomous guided vehicle's (AGV) role has also increased. This paper is about an active and effective controller which can flexibly prepare for changeable circumstances. For this study, research about an behavior-based system evolving by itself is also being considered. In this paper, constructed an active and effective AGV fuzzy controller to be able to carry out self-organization. To construct it, we tuned suboptimally membership function using a genetic algorithm (GA) and improved the control efficiency by self-correction and the generation of control rules.

  • PDF

A Study on the Fuzzy Learning Control for Force Control of Robot Manipulators (로봇 매니퓰레이터의 힘제어를 위한 퍼지 학습제어에 관한 연구)

  • 황용연
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.581-588
    • /
    • 2002
  • A fuzzy learning control algorithm is proposed in this paper. In this method, two fuzzy controllers are used as a feedback and a feedforward type. The fuzzy feedback controller can be designed using simple knowledge for the controlled system. On the other hand, the fuzzy feedforward controller has a self-organizing mechanism and therefore, it does not need any knowledge in advance. The effectiveness of the proposed algorithm is demonstrated by experiment on the position and force control problem of a parallelogram type robot manipulator with two degrees of freedom. It is shown that the rapid learning and the robustness can be achieved by adopting the proposed method.

Trajectory Study of Self-organizing Fuzzy Control and Its Application to Inverted Pendulum Control (자기구성 퍼지네어의 궤적연구 및 도립진자 제어 적용)

  • 박정일;류재규
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.12
    • /
    • pp.35-44
    • /
    • 1994
  • In this paper, we propose a new modification method of the look-up table in self-organizing fuzzy control using look-up table. This method has the property that look-up table is modified to have fast response property. Its principle is that the controller forces the trajectory to go into the fast respose region which the error change amount is larger than the error at initial time whenever the reference or disturbance change. Also we introduce the variable learning speed coefficient which is proportional to distance from switching curve. And to demonstrate the applicability of the proposed method, we had simulation study for some examples and esecuted pole balance experiments with inverted pendulum.

  • PDF