• 제목/요약/키워드: selective feature vector

검색결과 5건 처리시간 0.02초

Comparison Analysis of Resonant Controllers for Current Regulation of Selective Active Power Filter with Mixed Current Reference

  • Yi, Hao;Zhuo, Fang;Li, Yu;Zhang, Yanjun;Zhan, Wenda
    • Journal of Power Electronics
    • /
    • 제13권5호
    • /
    • pp.861-876
    • /
    • 2013
  • Instead of extracting every selected harmonic component, the current reference of selective active power filter (APF) can be also obtained by filtering out the fundamental component from distorted load current for computation efficiency. This type of mixed current reference contains kinds of harmonic components and easily involves noises. In this condition, selective harmonic compensation must be realized by the current controller. With regard that selectivity is the most significant feature of controller, this paper presents specific comparison analysis between two types of resonant controllers: proportional-resonant (PR) controller and vector-resonant (VR) controller. The comparison analysis covers the relations, performances, and stability of both controllers. Analysis results conclude that the poorer selectivity of the PR controller could be relatively improved, but limitations from system stability make the improvement hardly realized. By contrast, the VR controller exhibits excellent selectivity and is more suitable for selective APF with mixed current reference. Experimental results from laboratory prototype validate the reasonability of analysis. And the features of each resonant controller are concluded.

조명의 변화가 심한 환경에서 자동차 부품 유무 비전검사 방법 (Auto Parts Visual Inspection in Severe Changes in the Lighting Environment)

  • 김기석;박요한;박종섭;조재수
    • 제어로봇시스템학회논문지
    • /
    • 제21권12호
    • /
    • pp.1109-1114
    • /
    • 2015
  • This paper presents an improved learning-based visual inspection method for auto parts inspection in severe lighting changes. Automobile sunroof frames are produced automatically by robots in most production lines. In the sunroof frame manufacturing process, there is a quality problem with some parts such as volts are missed. Instead of manual sampling inspection using some mechanical jig instruments, a learning-based machine vision system was proposed in the previous research[1]. But, in applying the actual sunroof frame production process, the inspection accuracy of the proposed vision system is much lowered because of severe illumination changes. In order to overcome this capricious environment, some selective feature vectors and cascade classifiers are used for each auto parts. And we are able to improve the inspection accuracy through the re-learning concept for the misclassified data. The effectiveness of the proposed visual inspection method is verified through sufficient experiments in a real sunroof production line.

낚시성 인터넷 신문기사 검출을 위한 특징 추출 (Feature Extraction to Detect Hoax Articles)

  • 허성완;손경아
    • 정보과학회 논문지
    • /
    • 제43권11호
    • /
    • pp.1210-1215
    • /
    • 2016
  • 스마트 기기의 발달로 많은 사람들이 인터넷 신문기사를 이용하고 있다. 하지만 인터넷 언론사간의 치열한 경쟁으로 조회수를 올리기 위한 낚시성 기사가 범람하고 있다. 낚시성 신문기사는 제목을 통해 올바른 기사의 줄거리가 제공되지 않았을 뿐만 아니라, 독자로 하여금 잘못된 내용을 떠올리게 한다. 낚시성 신문기사는 핵심에서 벗어난 유명인사 인용, 애매한 문장의 마무리, 제목과 내용의 불일치 등의 특징을 갖는다. 본 논문에서는 이러한 낚시성 기사를 분류하기 위한 특징을 추출하고 성능을 검증해 본다. 기사에 달린 댓글의 키워드를 활용하여 대용량 학습데이터를 생성하고 이를 기반으로 다섯 가지 분류 특징을 추출하였다. 추출된 특징들은 서포트 벡터 머신 분류기를 이용한 실험에서 92%의 정확도를 보여 낚시성 인터넷 신문기사를 분류하는데 적합하다고 판단된다. 뿐만 아니라 제목과 본문의 일관성을 측정하기 위한 전처리 방법으로 고안한 선택적 바이그램 모델은 낚시성 인터넷 신문기사 분류 외에도 일반적인 단문 분석을 위한 전처리 방법으로 유용할 것으로 기대된다.

문장 분류를 위한 정보 이득 및 유사도에 따른 단어 제거와 선택적 단어 임베딩 방안 (Selective Word Embedding for Sentence Classification by Considering Information Gain and Word Similarity)

  • 이민석;양석우;이홍주
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.105-122
    • /
    • 2019
  • 텍스트 데이터가 특정 범주에 속하는지 판별하는 문장 분류에서, 문장의 특징을 어떻게 표현하고 어떤 특징을 선택할 것인가는 분류기의 성능에 많은 영향을 미친다. 특징 선택의 목적은 차원을 축소하여도 데이터를 잘 설명할 수 있는 방안을 찾아내는 것이다. 다양한 방법이 제시되어 왔으며 Fisher Score나 정보 이득(Information Gain) 알고리즘 등을 통해 특징을 선택 하거나 문맥의 의미와 통사론적 정보를 가지는 Word2Vec 모델로 학습된 단어들을 벡터로 표현하여 차원을 축소하는 방안이 활발하게 연구되었다. 사전에 정의된 단어의 긍정 및 부정 점수에 따라 단어의 임베딩을 수정하는 방법 또한 시도하였다. 본 연구는 문장 분류 문제에 대해 선택적 단어 제거를 수행하고 임베딩을 적용하여 문장 분류 정확도를 향상시키는 방안을 제안한다. 텍스트 데이터에서 정보 이득 값이 낮은 단어들을 제거하고 단어 임베딩을 적용하는 방식과, 정보이득 값이 낮은 단어와 코사인 유사도가 높은 주변 단어를 추가로 선택하여 텍스트 데이터에서 제거하고 단어 임베딩을 재구성하는 방식이다. 본 연구에서 제안하는 방안을 수행함에 있어 데이터는 Amazon.com의 'Kindle' 제품에 대한 고객리뷰, IMDB의 영화리뷰, Yelp의 사용자 리뷰를 사용하였다. Amazon.com의 리뷰 데이터는 유용한 득표수가 5개 이상을 만족하고, 전체 득표 중 유용한 득표의 비율이 70% 이상인 리뷰에 대해 유용한 리뷰라고 판단하였다. Yelp의 경우는 유용한 득표수가 5개 이상인 리뷰 약 75만개 중 10만개를 무작위 추출하였다. 학습에 사용한 딥러닝 모델은 CNN, Attention-Based Bidirectional LSTM을 사용하였고, 단어 임베딩은 Word2Vec과 GloVe를 사용하였다. 단어 제거를 수행하지 않고 Word2Vec 및 GloVe 임베딩을 적용한 경우와 본 연구에서 제안하는 선택적으로 단어 제거를 수행하고 Word2Vec 임베딩을 적용한 경우를 비교하여 통계적 유의성을 검정하였다.

선택적 자질 차원 축소를 이용한 최적의 지도적 LSA 방법 (Optimal supervised LSA method using selective feature dimension reduction)

  • 김정호;김명규;차명훈;인주호;채수환
    • 감성과학
    • /
    • 제13권1호
    • /
    • pp.47-60
    • /
    • 2010
  • 기존 웹 페이지 자동분류 연구는 일반적으로 학습 기반인 kNN(k-Nearest Neighbor), SVM(Support Vector Machine)과 통계 기반인 Bayesian classifier, NNA(Neural Network Algorithm)등 여러 종류의 분류작업에서 입증된 분류 기법을 사용하여 웹 페이지를 분류하였다. 하지만 인터넷 상의 방대한 양의 웹 페이지와 각 페이지로부터 나오는 많은 양의 자질들을 처리하기에는 공간적, 시간적 문제에 직면하게 된다. 그리고 분류 대상을 표현하기 위해 흔히 사용하는 단일(uni-gram) 자질 기반에서는 자질들 간의 관계 분석을 통해 자질에 정확한 의미를 부여하기 힘들다. 특히 본 논문의 분류 대상인 한글 웹 페이지의 자질인 한글 단어는 중의적인 의미를 가지는 경우가 많기 때문에 이러한 중의성이 분류 작업에 많은 영향을 미칠 수 있다. 잠재적 의미 분석 LSA(Latent Semantic Analysis) 분류기법은 선형 기법인 특이치 분해 SVD(Singular Value Decomposition)을 통해 행렬의 분해 및 차원 축소(dimension reduction)를 수행하여 대용량 데이터 집합의 분류를 효율적으로 수행하고, 또한 차원 축소를 통해 새로운 의미공간을 생성하여 자질들의 중의적 의미를 분석할 수 있으며 이 새로운 의미공간상에 분류 대상을 표현함으로써 분류 대상의 잠재적 의미를 분석할 수 있다. 하지만 LSA의 차원 축소는 전체 데이터의 표현 정도만을 고려할 뿐 분류하고자 하는 범주를 고려하지 않으며 또한 서로 다른 범주 간의 차별성을 고려하지 않기 때문에 축소된 차원 상에서 분류 시 서로 다른 범주 데이터간의 모호한 경계로 인해 안정된 분류 성능을 나타내지 못한다. 이에 본 논문은 새로운 의미공간(semantic space) 상에서 서로 다른 범주사이의 명확한 구분을 위한 특별한 차원 선택을 수행하여 최적의 차원 선택과 안정된 분류성능을 보이는 최적의 지도적 LSA을 소개한다. 제안한 지도적 LSA 방법은 기본 LSA 및 다른 지도적 LSA 방법들에 비해 저 차원 상에서 안정되고 더 높은 성능을 보였다. 또한 추가로 자질 생성 및 선택 시 불용어의 제거와 자질에 대한 가중치를 통계적인 학습을 통해 얻음으로써 더 높은 학습효과를 유도하였다.

  • PDF