• Title/Summary/Keyword: selection transmission

Search Result 588, Processing Time 0.032 seconds

Packet Scheduling for Cellular Relay Networks by Considering Relay Selection, Channel Quality, and Packet Utility

  • Zhou, Rui;Nguyen, Hoang Nam;Sasase, Iwao
    • Journal of Communications and Networks
    • /
    • v.11 no.5
    • /
    • pp.464-472
    • /
    • 2009
  • In this paper, we propose a packet scheduling algorithm for cellular relay networks by considering relay selection, variation of channel quality, and packet delay. In the networks, mobile users are equipped with not only cellular but also user relaying radio interfaces, where base station exploits adaptive high speed downlink channel. Our proposed algorithm selects a user with good cellular channel condition as a relay station for other users with bad cellular channel condition but can get access to relay link with good quality. This can achieve flexible packet scheduling by adjusting transmission rates of cellular link. Packets are scheduled for transmission depending on scheduling indexes which are calculated based on user's achieved transmission rate, packet utility, and proportional fairness of their throughput. The performance results obtained by using computer simulation show that the proposed scheduling algorithm is able to achieve high network capacity, low packet loss, and good fairness in terms of received throughput of mobile users.

Secure Connectivity Probability of Multi-hop Clustered Randomize-and-Forward Networks

  • Wang, Xiaowei;Su, Zhou;Wang, Guangyi
    • ETRI Journal
    • /
    • v.39 no.5
    • /
    • pp.729-736
    • /
    • 2017
  • This work investigates secure cluster-aided multi-hop randomize-and-forward networks. We present a hop-by-hop multi-hop transmission scheme with relay selection, which evaluates for each cluster the relays that can securely receive the message. We propose an analytical model to derive the secure connectivity probability (SCP) of the hop-by-hop transmission scheme. For comparison, we also analyze SCPs of traditional end-to-end transmission schemes with two relay-selection policies. We perform simulations, and our analytical results verify that the proposed hop-by-hop scheme is superior to end-to-end schemes, especially with a large number of hops or high eavesdropper channel quality. Numerical results also show that the proposed hop-by-hop scheme achieves near-optimal performance in terms of the SCP.

Secure Cluster Selection in Autonomous Vehicular Networks

  • Mohammed, Alkhathami
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.11-16
    • /
    • 2023
  • Vehicular networks are part of the next generation wireless and smart Intelligent Transportation Systems (ITS). In the future, autonomous vehicles will be an integral part of ITS and will provide safe and reliable traveling features to the users. The reliability and security of data transmission in vehicular networks has been a challenging task. To manage data transmission in vehicular networks, road networks are divided into clusters and a cluster head is selected to handle the data. The selection of cluster heads is a challenge as vehicles are mobile and their connectivity is dynamically changing. In this paper, a novel secure cluster head selection algorithm is proposed for secure and reliable data sharing. The idea is to use the secrecy rate of each vehicle in the cluster and adaptively select the most secure vehicle as the cluster head. Simulation results show that the proposed scheme improves the reliability and security of the transmission significantly.

3D Markov chain based multi-priority path selection in the heterogeneous Internet of Things

  • Wu, Huan;Wen, Xiangming;Lu, Zhaoming;Nie, Yao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5276-5298
    • /
    • 2019
  • Internet of Things (IoT) based sensor networks have gained unprecedented popularity in recent years. With the exponential explosion of the objects (sensors and mobiles), the bandwidth and the speed of data transmission are dwarfed by the anticipated emergence of IoT. In this paper, we propose a novel heterogeneous IoT model integrated the power line communication (PLC) and WiFi network to increase the network capacity and cope with the rapid growth of the objects. We firstly propose the mean transmission delay calculation algorithm based the 3D Markov chain according to the multi-priority of the objects. Then, the attractor selection algorithm, which is based on the adaptive behavior of the biological system, is exploited. The combined the 3D Markov chain and the attractor selection model, named MASM, can select the optimal path adaptively in the heterogeneous IoT according to the environment. Furthermore, we verify that the MASM improves the transmission efficiency and reduce the transmission delay effectively. The simulation results show that the MASM is stable to changes in the environment and more applicable for the heterogeneous IoT, compared with the other algorithms.

Farthest-k relay selection algorithm for efficient D2D message dissemination (효율적인 D2D 메시지 확산을 위한 최외곽 k개의 릴레이 선택 알고리즘)

  • Han, Seho;Lee, Howon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.3
    • /
    • pp.543-548
    • /
    • 2017
  • In the conventional algorithm, the D2D message dissemination algorithm based on the Epidemic routing protocol frequently causes a problem of duplication of the received messages due to the overlaps of D2D transmission coverages. It is because all D2D devices that receive the messages perform relaying the message replicas to other D2D devices within their transmission range. Therefore, we herein propose the farthest-k relay selection algorithm to mitigate this message duplication problem. In the farthest-k relay selection algorithm, less than k devices within the D2D transmission range perform message relay. Furthermore, we perform comparative performance analysis between the conventional D2D data dissemination algorithm and our farthest-k relay selection algorithm. By using intensive MATLAB simulations we prove the performance excellency of our farthest-k relay algorithm compared with the conventional algorithm with respect to coverage probability, the total number of initially and duplicately received messages, and transmission efficiency.

Energy Efficient Transmission Parameters Analysis of TDMA Based HR-WPAN System for Ship Environment (선박환경에서 에너지 효율성을 고려한 TDMA기반 고속 WPAN시스템의 전송파라미터 분석)

  • Park, Young-Min;Lee, Woo-Young;Lee, Seong-Ro;Lee, Yeon-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9A
    • /
    • pp.712-718
    • /
    • 2009
  • This paper proposes the optimal transmission parameter selection method for an energy efficient Wireless Personal Area Network (WPAN) system which is applicable to the Maritime Telematics targeting for various ship models. Since the transmission parameter selection is an important factor for WPAN system to decide its energy efficiency, we propose an energy consumption model for ship area network (SAN) employing IEEE 802.15.3 based TDMA HR-WPAN model and analyzes the effect of transmission parameter selection on the performance of energy consumption. In particular, the main performance decision parameter of the SAN applying HR-WPAN is path loss, since it is very varied according to the material of shipbuilding such as steel (large ship), FRP (medium size ship) and compound wood (small ship). Thus, we analyzed and demonstrated that the proper transmission parameter selection among transmit power, PHY data rate and fragment size for each ship model guarantee the energy efficiency.

Energy Efficient Transmission Parameters Analysis of TDMA based HR-WPAN System for Ship Environment (선박환경에서 에너지 효율성을 고려한 TDMA기반 고속 WPAN시스템의 전송파라미터 분석)

  • Park, Young-Min;Lee, Woo-Young;Lee, Seong-Ro;Lee, Yeon-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10A
    • /
    • pp.769-775
    • /
    • 2009
  • This paper proposes the optimal transmission parameter selection method for an energy efficient Wireless Personal Area Network (WPAN) system which is applicable to the Maritime Telematics targeting for various ship models. Since the transmission parameter selection is an important factor for WPAN system to decide its energy efficiency, we propose an energy consumption model for ship area network (SAN) employing IEEE 802.15.3 based TDMA HR-WPAN model and analyzes the effect of transmission parameter selection on the performance of energy consumption. In particular, the main performance decision parameter of the SAN applying HR-WPAN is path loss, since it is very varied according to the material of shipbuilding such as steel (large ship), FRP (medium size ship) and compound wood (small ship). Thus, we analyzed and demonstrated that the proper transmission parameter selection among transmit power, PHY data rate and fragment size for each ship model guarantee the energy efficiency.

Channel Selection for Spectrum Sharing in Wireless Networks

  • Park, Jae Cheol;Kang, Kyu-Min;Park, Seungkeun
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.952-961
    • /
    • 2016
  • In this paper, we study a spectrum sharing network (SSN) where a spectrum sharing device (SSD) coexists with multiple wireless communication systems (WCSs) in the same channel. The SSD can operate with either a duty cycle (DC) channel access mechanism or a listen-before-talk (LBT) channel access mechanism, whereas WCSs operate with an LBT mechanism. An opportunistic channel selection scheme for the SSD in the SSN is first proposed to minimize the outage probability. The optimal data transmission time for the DC-based SSD is derived to further improve the outage probability. We also derive the exact and closed-form outage probability of the proposed channel selection in the SSN by assuming that the number of WCSs operating in each channel is uniformly distributed. The simulation results show that the proposed channel selection scheme outperforms other channel selection schemes. It was also observed that a DC-based SSD with an optimal data transmission time provides a better outage performance than an LBT-based SSD. As the number of available channels increases, the channel selection scheme plays an important role in minimizing the outage probability of the SSNs.

Linear Precoding Technique for Cooperative MIMO Communication Systems Using Selection-Type Relaying (선택적 중계 기법을 적용한 다중 안테나 기반 협력 통신 시스템의 선형 전처리 기술)

  • Yoo, Byung-Wook;Lee, Chung-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.11
    • /
    • pp.24-29
    • /
    • 2010
  • Selection-type relaying protocol, which is one of cooperative relaying protocols, provides low decoding complexity and improved system performance due to selection diversity. In this paper, we deal with linear precoding technique that minimize the error probability of cooperative MIMO system. Under the assumption that full channel state information is available at whole nodes, linear source and relay precoders, which minimize mean squared error of the estimated symbol vector, are proposed. Moreover, unlikely to the conventional selection-type relaying protocol using a fixed threshold signal-to-noise-ratio, new transmission link selection algorithm selects direct link or relay link as a transmission link, is introduced. Simulation results show that the proposed linear precoder with the transmission link selection algorithm outperforms the conventional precoders for two-hop relaying protocols or selection-type relaying protocols.

A study of measurement of the unknown load impedance using sectioned transmission line (${\lambda}/4$ 전송선로를 이용한 부하단 임피던스 측정방법에 관한 연구)

  • Hwang, Soo-Sul;Hong, Sung-Yong
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.2
    • /
    • pp.91-96
    • /
    • 2011
  • In this paper, we present measurement method of the unknown load impedance. Load impedance is continuously varied by external environment conditions. This arbitrarily varied load impedance can be calculated using 3-point voltage measurement on ${\lambda}/4$ sectioned transmission line. We derived several numerical formulas from 3-point voltage measurement results and drew load impedance selection algorithm from calculated load impedance results. These numerical formulas and load impedance selection algorithm are verified by ADS simulation. Simulation results showed that arbitrary load impedance can be correctly measured using above mentioned formulas and selection algorithm.