• Title/Summary/Keyword: selection transmission

Search Result 588, Processing Time 0.028 seconds

Comparison Study of Helper Node Selection Schemes of Cooperative Communications at Ad Hoc Networks (애드혹 네트워크에서 협력통신을 위한 도움노드 선정방법 비교연구)

  • Jang, Jae-Shin
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.2
    • /
    • pp.69-78
    • /
    • 2012
  • In this paper, a study on finding an appropriate helper node that can help increase effective frame transmission rate for cooperative communications at ad hoc networks is carried out. Those researches from reference use the reactive helper node selection mechanism which starts its role after exchanging RTS and CTS frames between source and destination nodes, and are implemented into our simulator for performance comparison. System throughput and average channel access delay are used for performance measures and all communicating nodes are assumed to move independently within the communication range. It is anticipated that this research result can be used as basic information for designing a new efficient helper node selection scheme.

Block-Level Resource Allocation with Limited Feedback in Multicell Cellular Networks

  • Yu, Jian;Yin, Changchuan
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.420-428
    • /
    • 2016
  • In this paper, we investigate the scheduling and power allocation for coordinated multi-point transmission in downlink long term evolution advanced (LTE-A) systems, where orthogonal frequency division multiple-access is used. The proposed scheme jointly optimizes user selection, power allocation, and modulation and coding scheme (MCS) selection to maximize the weighted sum throughput with fairness consideration. Considering practical constraints in LTE-A systems, the MCSs for the resource blocks assigned to the same user need to be the same. Since the optimization problem is a combinatorial and non-convex one with high complexity, a low-complexity algorithm is proposed by separating the user selection and power allocation into two subproblems. To further simplify the optimization problem for power allocation, the instantaneous signal-to-interference-plus-noise ratio (SINR) and the average SINR are adopted to allocate power in a single cell and multiple coordinated cells, respectively. Simulation results show that the proposed scheme can improve the average system throughput and the cell-edge user throughput significantly compared with the existing schemes with limited feedback.

Secure and Robust Clustering for Quantized Target Tracking in Wireless Sensor Networks

  • Mansouri, Majdi;Khoukhi, Lyes;Nounou, Hazem;Nounou, Mohamed
    • Journal of Communications and Networks
    • /
    • v.15 no.2
    • /
    • pp.164-172
    • /
    • 2013
  • We consider the problem of secure and robust clustering for quantized target tracking in wireless sensor networks (WSN) where the observed system is assumed to evolve according to a probabilistic state space model. We propose a new method for jointly activating the best group of candidate sensors that participate in data aggregation, detecting the malicious sensors and estimating the target position. Firstly, we select the appropriate group in order to balance the energy dissipation and to provide the required data of the target in the WSN. This selection is also based on the transmission power between a sensor node and a cluster head. Secondly, we detect the malicious sensor nodes based on the information relevance of their measurements. Then, we estimate the target position using quantized variational filtering (QVF) algorithm. The selection of the candidate sensors group is based on multi-criteria function, which is computed by using the predicted target position provided by the QVF algorithm, while the malicious sensor nodes detection is based on Kullback-Leibler distance between the current target position distribution and the predicted sensor observation. The performance of the proposed method is validated by simulation results in target tracking for WSN.

Sensor placement selection of SHM using tolerance domain and second order eigenvalue sensitivity

  • He, L.;Zhang, C.W.;Ou, J.P.
    • Smart Structures and Systems
    • /
    • v.2 no.2
    • /
    • pp.189-208
    • /
    • 2006
  • Monitoring large-scale civil engineering structures such as offshore platforms and high-large buildings requires a large number of sensors of different types. Innovative sensor data information technologies are very extremely important for data transmission, storage and retrieval of large volume sensor data generated from large sensor networks. How to obtain the optimal sensor set and placement is more and more concerned by researchers in vibration-based SHM. In this paper, a method of determining the sensor location which aims to extract the dynamic parameter effectively is presented. The method selects the number and place of sensor being installed on or in structure by through the tolerance domain statistical inference algorithm combined with second order sensitivity technology. The method proposal first finds and determines the sub-set sensors from the theoretic measure point derived from analytical model by the statistical tolerance domain procedure under the principle of modal effective independence. The second step is to judge whether the sorted out measured point set has sensitive to the dynamic change of structure by utilizing second order characteristic value sensitivity analysis. A 76-high-building benchmark mode and an offshore platform structure sensor optimal selection are demonstrated and result shows that the method is available and feasible.

Joint Antenna Selection and Multicast Precoding in Spatial Modulation Systems

  • Wei Liu;Xinxin Ma;Haoting Yan;Zhongnian Li;Shouyin Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3204-3217
    • /
    • 2023
  • In this paper, the downlink of the multicast based spatial modulation systems is investigated. Specifically, physical layer multicasting is introduced to increase the number of access users and to improve the communication rate of the spatial modulation system in which only single radio frequency chain is activated in each transmission. To minimize the bit error rate (BER) of the multicast based spatial modulation system, a joint optimizing algorithm of antenna selection and multicast precoding is proposed. Firstly, the joint optimization is transformed into a mixed-integer non-linear program based on single-stage reformulation. Then, a novel iterative algorithm based on the idea of branch and bound is proposed to obtain the quasioptimal solution. Furthermore, in order to balance the performance and time complexity, a low-complexity deflation algorithm based on the successive convex approximation is proposed which can obtain a sub-optimal solution. Finally, numerical results are showed that the convergence of our proposed iterative algorithm is between 10 and 15 iterations and the signal-to-noise-ratio (SNR) of the iterative algorithm is 1-2dB lower than the exhaustive search based algorithm under the same BER accuracy conditions.

Performance Analysis of Dual-Hop MBST-ADF Relay Networks Over Quasi-Static Rayleigh Fading Channels

  • Kim, Min-Chan;Lim, Sungmook;Ko, Kyunbyoung
    • International Journal of Contents
    • /
    • v.14 no.1
    • /
    • pp.18-27
    • /
    • 2018
  • The objective of this study was to derive approximate closed-form error rates for M-ary burst symbol transmission (MBST) of dual-hop adaptive decode-and-forward (ADF) cooperative relay systems over quasi-static Rayleigh fading channels. Within a burst, there are pilot symbols and data symbols. Pilot symbols are used for channel estimation schemes and each relay node's transmission mode selection schemes. At first, our focus was on ADF relay systems' error-events at relay nodes. Each event's occurrence probability and probability density function (PDF) were then derived. With error-event based approach, we derived a tractable form of PDF for combined signal-to-noise ratio (SNR). Averaged error rates were then derived as approximate expressions for arbitrary link SNR with different modulation orders and numbers of relays. Its accuracy was verified by comparison with simulation results.

The dynamic response of a prototype steel floor using velocity-source type of excitation

  • Magalhaes, Max D.C.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.3
    • /
    • pp.371-385
    • /
    • 2013
  • Vibration isolators and anti-vibration mounts are ideal, for example, in creating floating floors for gymnasiums, or performance spaces. However, it is well-known that there are great difficulties on isolating vibration transmission in structural steel components, especially steel floors. Besides, the selection of inertia blocks, which are usually used by engineers as an effective vibration control measure, is usually based on crude methods or the experience of the engineers. Thus, no simple method or indices have been available for assessing the effect of inertia blocks on vibration isolation or stability of vibratory systems. Thus, the aims of this research are to provide further background description using a FE model and present and implement a modal approach, that was validated experimentally, the latter assisting in providing improved understanding of the vibration transmission phenomenon in steel buildings excited by a velocity-source type of excitation. A better visualization of the mean-square velocity distribution in the frequency domain is presented using the concept of modal expansion. Finally, the variation of the mean-square velocity with frequency, whilst varying mass and/or stiffness of the coupled system, is presented.

Cooperation Models and Cooperative Routing for Exploiting Hop-by-Hop Cooperative Diver sity in Ad Hoc Networks

  • Shin, Hee-Wook;Moh, Sang-Man;Chung, Il-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.12
    • /
    • pp.1559-1571
    • /
    • 2011
  • In wireless ad hoc networks, nodes communicate with each other using multihop routed transmission in which hop-by-hop cooperative diversity can be effectively employed. This paper proposes (i) two cooperation models for per-link cooperation (PLC) and per-node cooperation (PNC) for exploiting cooperative diversity in wireless ad hoc networks and (ii) a cooperative routing algorithm for the above models in which best relays are selected for cooperative transmission. First, two cooperation models for PLC and PNC are introduced and represented as an edge-weighted graph with effective link quality. Then, the proposed models are transformed into a simplified graph and a cooperative routing algorithm with O(n2) time is developed, where n is the number of nodes in the network. The effectiveness of the algorithm is confirmed for the two cooperation models using simulation.

Effect of Head of the Line Blocking on Session Initiation Protocol Session Establishment Delays

  • Camarillo, Gonzalo;Schulzrinne, Henning;Loreto, Salvatore;Hautakorpi, Jani
    • Journal of Communications and Networks
    • /
    • v.11 no.1
    • /
    • pp.72-83
    • /
    • 2009
  • We have studied the effect of head of the line blocking (HOLB) on session initiation protocol (SIP) session establishment delays. Our results are based on experiments performed in a test bed and on the public Internet. We used the stream control transmission protocol (SCTP) as a transport for SIP because SCTP can be configured to suffer or to avoid HOLB. Our experiments show that the effect of HOLB on session establishment delays generally starts to be significant starting at fairly low packet loss rates. However, there are scenarios where network conditions are good enough to make the effect of HOLB insignificant.

GA-based Optimal Reactive Power Dispatch Taking Account of Transmission Loss Re-distribution and Voltage Dependent Load Models (송전손실 재분배와 전압의존형 부하모델을 적용한 GA기반의 무효전력 최적배분)

  • Chae, Myung-Suk;Lee, Myung-Hwan;Kim, Byung-Seop;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.350-353
    • /
    • 2000
  • This paper presents an algorithm for Optimal Reactive Power Dispatch(ORPD) problem based on genetic algorithm. Optimal reactive power dispatch is particularized to the minimization of transmission line losses by suitable selection of generator reactive power outputs and transformer tap settings. To reduce system loss and improve voltage profile, two methods, Loss Re-Distribution Algorithm (LRDA) and Voltage Dependent Load Model (VDLM), are applied to ORPD. The proposed methods have been evaluated on the IEEE 30 bus system. Each of results have been compared with result of load flow.

  • PDF