• Title/Summary/Keyword: selection transmission

Search Result 588, Processing Time 0.026 seconds

A Study on the Selection of Slack Bus at Application of Marginal Loss-Factor in a Competitive Electricity Market (경쟁적 전력시장에서 한계손실계수 적용시 기준모선 선정에 대한 연구)

  • Kim, Sang-Hoon;Lee, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.264-269
    • /
    • 2009
  • Marginal Loss Factor(MLF) is represented as the sensitivity of transmission loss, which is computed from the change of the generation at slack bus by the change of the load at the arbitrary bus. The MLF dependent on the selection of slack bus is one of the key factors affecting nodal pricing, Genco's profits, social welfare(SW) and Nash Equilibrium in a competitive electricity market. This paper addresses the methodology of slack bus selection by using Cournot model of Cost Based Pool market. Numerical results from sample cases show that the slack bus of MLF of the highest average is beneficial from the view points of SW.

Selection Based Cooperative Beamforming and Power Allocation for Relay Networks

  • Liu, Yi;Nie, Weiqing
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.377-384
    • /
    • 2011
  • Cooperative beamforming has previously been proven to be an efficient way to improve the cooperative diversity. This method generally requires all relay nodes to participate in beamforming, which can be seen as "all participate" cooperative beamforming. However, not all relay nodes have constructive impacts on the end-to-end bit error rate (BER) performance. Based on this observation, we propose a new cooperative scheme which only selects those "appropriate" relay nodes to perform cooperative beamforming. Such relay nodes can be simply determined with mean channel gains. Therefore, the selection complexity is significantly reduced as global instantaneous channel state information is not required. This scheme guarantees that energy is only allocated to the "appropriate" relay nodes, and hence provides superior diversity. We also prove that power allocation among source and selected relay nodes is a convex problem, and can be resolved with lower computational complexity. Simulation results demonstrate that our scheme achieves an essential improvement in terms of BER performance for both optimal and limited feedback scenarios, as well as high energy-efficiency for the energy-constrained networks.

ON THE SELECTION Of INPUT VARIABLES TO BE RETAINED IN A REDUCED_ORDER MODEL

  • Lee, Kun-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.198-200
    • /
    • 1987
  • This paper presents the choice of appropriate sets of input variables for large-scale linear multivariable systems. It is shown that the selection of a good set of input variables for control may become important when both strong and weak input variables are available. The transmission of information from the inputs to the outputs is investigated and appropriate scaling procedures to derive a scaled input matrix are proposed. Singular value decomposition methods facilitate the quantification of the systems excitation stemming from the various input variables, and thus the selection of an appropriately strong and orthogonal set of input variables. The need for and the implementation and benefits of reducing the number of input variables are illustrated by a large-scale steam generator model of a real process.

  • PDF

Secure Performance Analysis Based on Maximum Capacity

  • Zheng, Xiuping;Li, Meiling;Yang, Xiaoxia
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1261-1270
    • /
    • 2020
  • The physical security layer of industrial wireless sensor networks in the event of an eavesdropping attack has been investigated in this paper. An optimal sensor selection scheme based on the maximum channel capacity is proposed for transmission environments that experience Nakagami fading. Comparing the intercept probabilities of the traditional round robin (TRR) and optimal sensor selection schemes, the system secure performance is analyzed. Simulation results show that the change in the number of sensors and the eavesdropping ratio affect the convergence rate of the intercept probability. Additionally, the proposed optimal selection scheme has a faster convergence rate compared to the TRR scheduling scheme for the same eavesdropping ratio and number of sensors. This observation is also valid when the Nakagami channel is simplified to a Rayleigh channel.

Optimal Cluster Head Selection Method for Sectorized Wireless Powered Sensor Networks (섹터기반 무선전력 센서 네트워크를 위한 최적 클러스터 헤드 선택 방법)

  • Choi, Hyun-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.176-179
    • /
    • 2022
  • In this paper, we consider a sectorized wireless powered sensor network (WPSN), wherein sensor nodes are clustered based on sectors and transmit data to the cluster head (CH) using energy harvested from a hybrid access point. We construct a system model for this sectorized WPSN and find optimal coordinates of CH that maximize the achievable transmission rate of sensing data. To obtain the optimal CH with low overhead, we perform an asymptotic geometric analysis (GA). Simulation results show that the proposed GA-based CH selection method is close to the optimal performance exhibited by exhaustive search with a low feedback overhead.

Development of Energy-sensitive Cluster Formation and Cluster Head Selection Technique for Large and Randomly Deployed WSNs

  • Sagun Subedi;Sang Il Lee
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • Energy efficiency in wireless sensor networks (WSNs) is a critical issue because batteries are used for operation and communication. In terms of scalability, energy efficiency, data integration, and resilience, WSN-cluster-based routing algorithms often outperform routing algorithms without clustering. Low-energy adaptive clustering hierarchy (LEACH) is a cluster-based routing protocol with a high transmission efficiency to the base station. In this paper, we propose an energy consumption model for LEACH and compare it with the existing LEACH, advanced LEACH (ALEACH), and power-efficient gathering in sensor information systems (PEGASIS) algorithms in terms of network lifetime. The energy consumption model comprises energy-sensitive cluster formation and a cluster head selection technique. The setup and steady-state phases of the proposed model are discussed based on the cluster head selection. The simulation results demonstrated that a low-energy-consumption network was introduced, modeled, and validated for LEACH.

Optimal Relocating of Compensators for Real-Reactive Power Management in Distributed Systems

  • Chintam, Jagadeeswar Reddy;Geetha, V.;Mary, D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2145-2157
    • /
    • 2018
  • Congestion Management (CM) is an attractive research area in the electrical power transmission with the power compensation abilities. Reconfiguration and the Flexible Alternating Current Transmission Systems (FACTS) devices utilization relieve the congestion in transmission lines. The lack of optimal power (real and reactive) usage with the better transfer capability and minimum cost is still challenging issue in the CM. The prediction of suitable place for the energy resources to control the power flow is the major requirement for power handling scenario. This paper proposes the novel optimization principle to select the best location for the energy resources to achieve the real-reactive power compensation. The parameters estimation and the selection of values with the best fitness through the Symmetrical Distance Travelling Optimization (SDTO) algorithm establishes the proper controlling of optimal power flow in the transmission lines. The modified fitness function formulation based on the bus parameters, index estimation correspond to the optimal reactive power usage enhances the power transfer capability with the minimum cost. The comparative analysis between the proposed method with the existing power management techniques regarding the parameters of power loss, cost value, load power and energy loss confirms the effectiveness of proposed work in the distributed renewable energy systems.

The Effect of Density and Thickness to the Warmth by different Weaves of Fabric (직물의 조직에 따른 밀도, 두께가 보온성에 미치는 영향)

  • 한명숙
    • Journal of the Korean Home Economics Association
    • /
    • v.12 no.1
    • /
    • pp.459-471
    • /
    • 1974
  • This study was carried out on the thermal transmission on account of variation of weaves and researched on the selection of the most suitable weaves for warmth. Also the interrelation among the density, thickness and thermal transmission by different weaves was studied, the author has woven three fundamental weaves, five weaves derived from the fundamental weaves and two special weaves for the purpose of experiment. In weaving of fabrics for experiments the lever type hand loom was used. Testing of texture was carried out according to KS and ASTM. The thermal transmission was also tested by as cooling method which were developed by the author. The conclusions of experiments were as follows. 1. Matt weaves, honey comb weaves and satin weaves having long floating yarns have large cover factor and were thicker. these structures of the weaves were good in warmth. 2. Thermal transmission was reciprocated to the cover factor, thickness and value of cover factor multiplied by thickness : It was found that the weaves of woven fabrics for warmth had better use of satin weaves, Matt weaves, Granite weaves and Honey comb weaves. In the time of warmth is not the first purpose, had better use of Rib weaves. Plain weaves and Twill weaves with thin thickness and high thermal transmission.

  • PDF

Establishing Best Power Transmission Path using Receiver Based on the Received Signal Strength

  • Eom, Jeongsook;Son, Heedong;Park, Yongwan
    • Journal of Internet Computing and Services
    • /
    • v.18 no.6
    • /
    • pp.15-23
    • /
    • 2017
  • Wireless power transmission (WPT) for wireless charging is currently attracting much attention as a promising approach to miniaturize batteries and increase the maximum total range of an electric vehicle. The main advantage of the laser power beam (LPB) approach is its high power transmission efficiency (PTE) over long distance. In this paper, we present the design of a laser power beam based WPT system, which has a best WPT channel selection technique at the receiver end when multiple power transmitters and single power receiver are operated simultaneously. The transmitters send their transmission channel information via optically modulated laser pulses. The receiver uses the received signal strength indicator and digitized data to choose an optimum power transmission path. We modeled a vertical multi-junction photovoltaic cell array, and conducted an experiment and simulation to test the feasibility of this system. From the experimental result, the standard deviation between the mathematical model and the measured values of normalized energy distribution is 0.0052. The error between the mathematical model and measured values are acceptable, thus the validity of the model is verified.

Search Algorithm for Advanced Transmission Rate based on Probabilistic Proportion Search of Distributed Objects (분산 객체의 확률적 비례 검색 기반 전송률 향상 검색 알고리즘)

  • Kim, Boon-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.3
    • /
    • pp.49-56
    • /
    • 2006
  • A special feature of P2P distributed system isn't always the guarantee of online status for peers. In other words we want to download the file from the peer when we use the P2P system but it sometimes caused this system to fail the download. Many studies to resolve this problem depend on re-transmission method. It caused to lower performance so we have to resolve this problem. In this study, we analysis the average usage time of P2P application user and raise the resource transmission guarantee to apply the selection criteria of resource supplier. Moreover the combinations of distributed object replication techniques, the role to enhance the data transmission opportunity of high popularity resource. will cause this search algorithm to advance.

  • PDF