본 논문에서는 3차원 물체의 인식을 위한 표면 분류시 그 임계치를 선정하는 방법에 대해 제안하고자 한다. 특히 보다 세밀하고 복잡한 물체의 표현을 위해 사용하여 왔던 평균 곡률과 가우스곡률이 가지고 있던 문제점인 임계치 선정 문제를 통계적 방법에 의해 해결하는 방법을 제안하고자 한다. 끝으로 본 논문의 유용성을 실험에 의해 입증하였다.
본 논문에서는 3차원 물체 인식을 위한 표면 분류 및 임계치 선정 방법에 대해 제안 하고자 한다. 3차원 영상 처리는 크게 거리 영상의 획득과 특징 추출 그리고 정합 과정으로 이루어진다. 본 논문에서는 전체 3차원 영상 처리 시스템중 거리 영상을 입력으로 했을 시 형상 특징을 추출하는 방법에 대해 제안하고자 한다. 이를 위해 첫째, 거리 영상의 깊이 변화 부호 값의 분포 특성에 따라 표면을 분류하는 방법을 제안하고자 한다. 또한 평균 곡률과 가우스 곡률을 이용하여 표면을 분류했던 기존 방법을 토대로 그의 문제점이었던 실제 거리 영상에서의 임계치 선정 방법에 대하여 제안하고자 한다. 끝으로 제안한 방법의 유용성을 실험에 의해 입증하고자 한다.
Detecting edges is one of issues with essentialimprotance in the area of image analysis. An edge in an image is a boundary or contour at which a significant change occurs in image intensity. Edge detection has been studied in many addlications such as imagesegmentation, robot vision, and image compression. In this paper, we propose an automatic threshold selection scheme for edge detection and show its application to noise elimination. The scheme suggested here applied statistical properties of the noise estimated from a noisy image to threshold selection. Since a selected threshold value in the scheme depends on not the characgreistic of an orginal image but the statistical feature of added noise, we can remove ad-hoc manners used for selecting the threshold value as well as decide the value theoretically. Furthermore, that shceme can reduce the number of edge pixels either generated or lost by noise. an application of the scheme to noise elimination is shown here. Noise in the input image can be eliminated with considering the direction of each edge pixedl on the edge map obtained by applying the threshold selection scheme proposed in this paper. Achieving significantly improved results in terms of SNR as well as subjective quality, we can claim that the suggested method works well.
Journal of information and communication convergence engineering
/
제13권2호
/
pp.113-122
/
2015
Feature subset selection is as a pre-processing step in learning algorithms. In this paper, we propose an efficient algorithm, ModifiedFAST, for feature subset selection. This algorithm is suitable for text datasets, and uses the concept of information gain to remove irrelevant and redundant features. A new optimal value of the threshold for symmetric uncertainty, used to identify relevant features, is found. The thresholds used by previous feature selection algorithms such as FAST, Relief, and CFS were not optimal. It has been proven that the threshold value greatly affects the percentage of selected features and the classification accuracy. A new performance unified metric that combines accuracy and the number of features selected has been proposed and applied in the proposed algorithm. It was experimentally shown that the percentage of selected features obtained by the proposed algorithm was lower than that obtained using existing algorithms in most of the datasets. The effectiveness of our algorithm on the optimal threshold was statistically validated with other algorithms.
There have been numerous studies that extract the R-peak from electrocardiogram (ECG) signals. All of these studies can extract R-peak from ECG. However, these methods are complicated and difficult to implement in a real-time portable ECG device. After filtration choosing a threshold value for R-peak detection is a big challenge. Fixed threshold scheme is sometimes unable to detect low R-peak value and adaptive threshold sometime detect wrong R-peak for more adaptation. In this paper, a simple and robustness algorithm is proposed to detect R-peak with less complexity. This method also solves the problem of threshold value selection. Using the adaptive filter, the baseline drift can be removed from ECG signal. After filtration, an appropriate threshold value is automatically chosen by using the minimum and maximum value of an ECG signals. Then the neighborhood searching scheme is applied under threshold value to detect R-peak from ECG signals. Proposed method improves the detection and accuracy rate of R-peak detection. After R-peak detection, we calculate heart rate to know the heart condition.
본 논문에서는 컴퓨터 시각에서 가장 중요한 과제의 하나인 ,3차원 물체의 표현에 대해 원뿔형태의 기술과 표면 분류시 임계치를 자동으로 선정하는 방법에 대해 제안하고자 한다. 기존에 미분기하학에서 사용한 평균 곡률 (H)과 가우스 곡률(K)은 물체의 상당 부분을 차지하고 있는 원뿔표면에 대한 분류가 불가능하였다. 또한 평균 곡률과 가우스 곡률의 부호값에 따른 표면 분류가 실제 거리 영상에 적용시 올바로 분류가 안 되는 문제를 가지고 있었다. 이 논문에서는 기존의 이 같은 두 가지 문제를 해결하기 위해 리지와 벨리의 표면분류로부터 원뿔표면 형태(cone ridge, cone valley)를 분류해 내었다. 즉, 원뿔표면 형태의 경우 H의 값이 일정하고, 원뿔표면 형태의 경우는 H의 값이 다름을 이용하여 원뿔표면 형태를 분류하였다. 아울러 통계적인 관점에서 표면분류 임계치를 선정할 수 있는 방법을 제안하고 실험에 의해 제안한 방법의 유용성을 입증하고자 한다.
영상의 이진화는 문자 인식, 영상 분석 등 다양한 영상 처리 분야의 전처리 과정으로 자주 적용되고 있다. 영상 이진화는 임계치의 설정에 따라 처리 성능이 좌우되며, 대부분의 기존 이진화 방법은 밝기 값의 히스토그램을 사용하여 평균 밝기 값이나 히스토그램의 골짜기를 임계치로 설정한다. 이와 같은 방법은 양봉의 특징을 보이지 않거나 특정 영상을 추출하려는 경우에는 적절한 임계치를 얻기 어렵다. 따라서 본 논문에서는 그레이 스케일 영상에서 밝기 값을 여러 구간으로 분할하여 각 구간의 밝기 평균값을 구하고, 두 개의 구간에 대해 평균값 사이의 거리를 각 구간에서 평균값과 양극과의 거리 비율로 나누어서 계산된 값을 두 개의 구간을 합친 새로운 구간의 임계치로 설정한다. 최종적으로 하나의 구간이 생성될 때까지 구간 통합과 임계값 계산을 반복함으로써 이진화 임계값을 산출한다. 제안된 이진화 방법의 성능을 평가하기 위하여 다양한 종류의 영상에 적용한 결과, 기존의 이진화 방법들보다 효율적인 것을 확인하였다.
The microscopic determination of air void characteristics in hardened concrete, defined in EN 480-11 as the linear-traverse method, is an extremely time-consuming and tedious task. Over past decades, several researchers have proposed relatively expensive mechanical automated systems which could replace the human operator in this procedure. Recently, the appearance of new high-resolution flatbed scanners has made it possible for the procedure to be automated in a fully-computerized and thus cost-effective way. The results of our work indicate the high sensitivity of such image analysis automated systems firstly to the quality of sample surface preparation, secondly to the selection of the air void threshold value, and finally to the selection of the probe system. However, it can be concluded that in case of careful validation and the use of the approach which is proposed in the paper, such automated systems can give very good estimate of the air void system parameters, defined in EN 480-11. The amount of time saved by using such a procedure is immense, and there is also the possibility of using alternative stereological methods to assess other, perhaps also important, characteristics of air void system in hardened concrete.
영상 분할 (Image Segmentation)은 패턴 인식, 환경 인식, 문서 분석을 위한 영상 처리 과정에서 가장 기본적인 단계이다. 영상 분할 방법들 중 Otsu의 영상의 정규화된 히스토그램의 분포 정보를 이용하여 클래스 간의 분산을 최대화 시키는 임계치값을 결정하는 자동 임계치값 선정방법이 가장 잘 알려진 방법이다. Otsu의 방법은 영상의 전 영역에 대한 히스토그램을 분석함으로써 영상의 부분적인 특성을 반영하여 임계치값을 결정하기는 어렵다. 본 논문에서는 이 어려움 해소하기 위하여 Context Fuzzy c-Means 알고리즘을 이용하여 영상을 여러 개의 부분 영역으로 나누고, 정의된 부 영역에 영상 분할 기법을 적용함으로써 부 영역들에 적합한 여러 개의 임계치값을 계산함으로써 영상 분할 성능을 개선하고자 하였다.
대부분의 이진화 알고리즘은 임계치를 결정하기 위하여 히스토그램을 사용하여 밝기 분포를 분석한다. 배경과 물체의 명도차이가 큰 경우에는 양봉 형태의 히스토그램이 나타나며 최적의 임계치를 찾기 위해 히스토그램 골짜기를 선택하는 것만으로도 양호한 임계치 결과를 얻을 수 있다. 반면에 배경과 물체의 밝기 차이가 크지 않거나 밝기 분포가 양봉 특성을 보이지 않을 때는 히스토그램 분석만으로 적절한 임계치를 얻기 어렵다 본 논문에서는 RGB 컬러 모형의 각 색상에 대하여 퍼지 소속 함수를 적용하고, 그 결과를 이용해 배경에 비해 가독성이 높은 특징들을 배경과 분리하는 방법을 제안한다. 제안된 이진화 방법은 RGB의 각 색상에 퍼지 소속 함수를 적용하여 얻은 값들을 이용해 이진화한다. 기존의 임계치를 이용한 이진화 방법에 비해 잡음 영역을 상당히 제거 할 수 있으며, 운송 컨테이너 영상에 적용한 결과, 기존의 방법에 비해 효율적인 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.