• 제목/요약/키워드: selection coefficient

검색결과 516건 처리시간 0.027초

디지틀 PID제어기에서의 계수양자화 오차 영향분석 (Analysis of coefficient quantization error effects in digital PID controllers)

  • 이상정;홍석민;윤기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.477-482
    • /
    • 1989
  • In this paper, the effect of coefficient quantization error is analyzed for digital PID controllers. Stability margins are used as peformance criteria, and the statistical wordlength concept is adopted for coefficient wordlength selection. Finally, an illustrative example is given.

  • PDF

비모수적 상관계수를 이용한 시맨틱 온톨로지 음성 정보 추출 (Semantic Ontology Speech Information Extraction using Non-parametric Correlation Coefficient)

  • 이병욱
    • 디지털융복합연구
    • /
    • 제11권9호
    • /
    • pp.147-151
    • /
    • 2013
  • 질의 키워드의 출현 빈도수가 높은 문서를 검색하면 키워드의 의미가 다양하여 정확한 정보를 인지하지 못하며, 기존 검색 시스템의 온톨로지 구성만으로는 검색된 문서들이 사용자의 요구에 부합되지 않는 문제점을 가진다. 본 연구에서는 시맨틱 웹 기술을 기반으로 인사관리에서 인선에 필요한 다양한 개념들과 지식으로 구성된 인선 온톨로지와 인선 규칙들을 구축하고 이들을 지원하는 인선 절차와 인선 결과의 적합성을 확인할 수 있는 시스템을 제안한다. 또한, 이를 기반으로 비모수적 상관 계수를 이용하여 음성 정보를 추출하는 방법을 사용하여 평균 SNR이 0.752dB 감소됨을 보임으로써 제안한 방법의 우수성을 확인하였다.

붓스트랩 방법을 활용한 SVM 기반 유전자 선택 기법 (Gene Selection Based on Support Vector Machine using Bootstrap)

  • 송석헌;김경희;박창이;구자용
    • 응용통계연구
    • /
    • 제20권3호
    • /
    • pp.531-540
    • /
    • 2007
  • 본 연구에서는 유전자 선택 방법으로 최근 이용되는 SVM-RFE 알고리즘은 단순히 가중치의 절대값을 유전자 선택 기준으로 사용하여 유전자 값의 변동성을 고려하지 못하므로 가중치의 절대값을 그것의 표준오차로 나눈 보완된 통계량, B-RFE 알고리즘을 새로운 기준으로 제안하였다. 두 방법을 모의실험을 통해서 비교한 결과 본 연구에서 제안한 B-RFE 알고리즘이 더 의미 있는 순위를 도출하였다.

Prediction Methodology for Reliability of Semiconductor Packages

  • Kim, Jin-Young
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2002년도 International Symposium
    • /
    • pp.79-94
    • /
    • 2002
  • Root cause -Thermal expansion coefficient mismatch -Tape warpage -Initial die crack (die roughness) Guideline for failure prevention -Optimized tape/Substrate design for minimizing the warpage -Fine surface of die backside Root cause -Thermal expansion coefficient mismatch - Repetitive bending of a signal trace during TC cycle - Solder mask damage Guideline for failure prevention - Increase of trace width - Don't make signal trace passing the die edge - Proper material selection with thick substrate core Root cause -Thermal expansion coefficient mismatch -Creep deformation of solder joint(shear/normal) -Material degradation Guideline for failure Prevention -Increase of solder ball size -Proper selection of the PCB/Substrate thickness -Optimal design of the ball array -Solder mask opening type : NSMD -In some case, LGA type is better

  • PDF

A New Hybrid Coder for High Quality Image Compression

  • Lee, Hang-Chan
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권6호
    • /
    • pp.36-42
    • /
    • 1997
  • This paper presents a new design technique for performing high quality low bit rate image compression. A hybrid coder(HC) which combines Mean Removed Important Coefficient Selection based JPEG(MR-ICS-JPEG) and Adaptive Vector Quantization (AVQ) is proposed. A new quantization table is developed using the Important Coefficient Selection(ICS) method; the importance of each coefficient is determined using the orthonormal property of the DCT. This quantization table is applied to standard JPEG with mean removal(MR) strategy before processing. This scheme, called MR-ICS-JPEG, produces more than 2 dB enhanced performance in terms of PSNR over standard JPEG. A set of homogeneous codebooks is generated by homogeneous training vectors. Before compression, an image is uniformly divided into 8${\times}$8 blocks. Low detail regions such as backgrounds are roughly coded by AVQ while high detail regions such as edges or curves are finely coded by the proposed MR-ICS-JPEG. This hybrid coder procuces consistently about 3 dB improved performance in terms of PSNR over standard JPEG.

  • PDF

Lossless Compression for Hyperspectral Images based on Adaptive Band Selection and Adaptive Predictor Selection

  • Zhu, Fuquan;Wang, Huajun;Yang, Liping;Li, Changguo;Wang, Sen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권8호
    • /
    • pp.3295-3311
    • /
    • 2020
  • With the wide application of hyperspectral images, it becomes more and more important to compress hyperspectral images. Conventional recursive least squares (CRLS) algorithm has great potentiality in lossless compression for hyperspectral images. The prediction accuracy of CRLS is closely related to the correlations between the reference bands and the current band, and the similarity between pixels in prediction context. According to this characteristic, we present an improved CRLS with adaptive band selection and adaptive predictor selection (CRLS-ABS-APS). Firstly, a spectral vector correlation coefficient-based k-means clustering algorithm is employed to generate clustering map. Afterwards, an adaptive band selection strategy based on inter-spectral correlation coefficient is adopted to select the reference bands for each band. Then, an adaptive predictor selection strategy based on clustering map is adopted to select the optimal CRLS predictor for each pixel. In addition, a double snake scan mode is used to further improve the similarity of prediction context, and a recursive average estimation method is used to accelerate the local average calculation. Finally, the prediction residuals are entropy encoded by arithmetic encoder. Experiments on the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) 2006 data set show that the CRLS-ABS-APS achieves average bit rates of 3.28 bpp, 5.55 bpp and 2.39 bpp on the three subsets, respectively. The results indicate that the CRLS-ABS-APS effectively improves the compression effect with lower computation complexity, and outperforms to the current state-of-the-art methods.

Variable Selection Criteria in Regression

  • Kim, Choong-Rak
    • Journal of the Korean Statistical Society
    • /
    • 제23권2호
    • /
    • pp.293-301
    • /
    • 1994
  • In this paper we propose a variable selection criterion minimizing influence curve in regression, and compare it with other criteria such as $C_p$(Mallows 1973) and adjusted coefficient of determination. Examples and extension to the generalized linear models are given.

  • PDF

SINR loss and user selection in massive MU-MISO systems with ZFBF

  • Hu, Mengshi;Chang, Yongyu;Zeng, Tianyi;Wang, Bin
    • ETRI Journal
    • /
    • 제41권5호
    • /
    • pp.637-647
    • /
    • 2019
  • Separating highly correlated users can reduce the loss caused by spatial correlation (SC) in multiuser multiple-input multiple-output (MU-MIMO) systems. However, few accurate analyses of the loss caused by SC have been conducted. In this study, we define signal-to-interference-plus-noise ratio (SINR) loss to characterize it in multiuser multiple-input single-output (MU-MISO) systems, and use coefficient of correlation (CoC) to describe the SC between users. A formula is deduced to show the accurate relation between SINR loss and CoC. Based on this relation, we propose a user selection method that utilizes CoC to minimize the average SINR loss of users in massive MU-MISO systems. Simulation results verify the correctness of the relation and show that the proposed user selection method is very effective at reducing the loss caused by SC in massive MU-MISO systems.

전진선택법에 의해 선택된 부분 상관관계의 유전자들을 이용한 암 분류 (Classifying Cancer Using Partially Correlated Genes Selected by Forward Selection Method)

  • 유시호;조성배
    • 대한전자공학회논문지SP
    • /
    • 제41권3호
    • /
    • pp.83-92
    • /
    • 2004
  • 유전 발현 데이터는 생명체의 특정 조직에서 채취한 샘플을 마이크로어레이상에서 측정한 것으로, 유전자들의 발현 정도가 수치로 나타난 데이터이다. 일반적으로 정상조직과 이상조직에서 관련 유전자들의 발현 정도는 차이를 보이기 때문에 유전 발현 데이터를 통하여 암을 분류할 수 있다. 그러나 분류에 모든 유전자가 관여하지는 않으므로 효율적인 암의 분류를 위해서는 관련성 있는 소수의 유전자만을 선별해내는 작업인 특징선택 방법이 필요하다. 본 논문에서는 회귀분석의 변수선택방법중 하나인 전진 선택법(forward selection method)을 사용하여 유전자들을 선하고 분류하는 방법을 제안한다. 이 방법은 선택되는 유전자들의 중복된 정보를 최소화시켜 암의 분류에 있어 보다 효과적인 유전자 선택을 한다. 실험데이터는 대장암 데이터(Colon cancer dataset)를 사용하였고, 분류기는 k-최근접 이웃(KNN)을 사용하였다. 이 방법과 상관계수를 이용한 특징 선택방법인 피어슨 상관계수와 스피어맨 상관계수방법과 비교해본 결과 전진 선택법에 의한 특징선택 방법이 암의 분류에 있어서 더 효과적인 유전자 선택을 한다는 사실을 확인하였다. 실험결과 90.3%의 높은 인식률을 보였다. 추가적으로 림프종 데이터에 대한 실험을 하였고, 그 결과 전진 선택법의 유용성을 확인할 수 있었다.

Variable Selection in Sliced Inverse Regression Using Generalized Eigenvalue Problem with Penalties

  • Park, Chong-Sun
    • Communications for Statistical Applications and Methods
    • /
    • 제14권1호
    • /
    • pp.215-227
    • /
    • 2007
  • Variable selection algorithm for Sliced Inverse Regression using penalty function is proposed. We noted SIR models can be expressed as generalized eigenvalue decompositions and incorporated penalty functions on them. We found from small simulation that the HARD penalty function seems to be the best in preserving original directions compared with other well-known penalty functions. Also it turned out to be effective in forcing coefficient estimates zero for irrelevant predictors in regression analysis. Results from illustrative examples of simulated and real data sets will be provided.