• Title/Summary/Keyword: selection breeding

Search Result 912, Processing Time 0.023 seconds

A Design of Multi-Field User Interface for Simulated Breeding

  • Unemi, Tastsuo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.489-494
    • /
    • 1998
  • This paper describes a design of graphical user interface for a simulated breeding tool with multifield. The term field is used here as a population of visualized individuals that are candidates of selection. Multi-field interface enables the user to breed his/her favorite phenotypes by selection independently in each field, and he/she can copy arbitrary individual into another field. As known on genetic algorithms, a small population likely leads to premature convergence trapped by a local optimum, and migration among plural populations is useful to escape from local optimum. The multi-field user interface provides easy implementation of migration and wider diversity. We show the usefulness of multi-field user interface through an example of a breeding system of 2D CG images.

  • PDF

Genomic Tools and Their Implications for Vegetable Breeding

  • Phan, Ngan Thi;Sim, Sung-Chur
    • Horticultural Science & Technology
    • /
    • v.35 no.2
    • /
    • pp.149-164
    • /
    • 2017
  • Next generation sequencing (NGS) technologies have led to the rapid accumulation of genome sequences through whole-genome sequencing and re-sequencing of crop species. Genomic resources provide the opportunity for a new revolution in plant breeding by facilitating the dissection of complex traits. Among vegetable crops, reference genomes have been sequenced and assembled for several species in the Solanaceae and Cucurbitaceae families, including tomato, pepper, cucumber, watermelon, and melon. These reference genomes have been leveraged for re-sequencing of diverse germplasm collections to explore genome-wide sequence variations, especially single nucleotide polymorphisms (SNPs). The use of genome-wide SNPs and high-throughput genotyping methods has led to the development of new strategies for dissecting complex quantitative traits, such as genome-wide association study (GWAS). In addition, the use of multi-parent populations, including nested association mapping (NAM) and multiparent advanced generation intercross (MAGIC) populations, has helped increase the accuracy of quantitative trait loci (QTL) detection. Consequently, a number of QTL have been discovered for agronomically important traits, such as disease resistance and fruit traits, with high mapping resolution. The molecular markers for these QTL represent a useful resource for enhancing selection efficiency via marker-assisted selection (MAS) in vegetable breeding programs. In this review, we discuss current genomic resources and marker-trait association analysis to facilitate genome-assisted breeding in vegetable species in the Solanaceae and Cucurbitaceae families.

The Effect of Sub-division (Two or Three Sub-populations) of a Population on Genetic Gain and Genetic Diversity

  • Oikawa, T.;Matsui, H.;Sato, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.6
    • /
    • pp.767-771
    • /
    • 2002
  • Breeding efficiencies were compared among three population schemes: a single population, a population with two subpopulations and a population with three sub-populations. A simulation experiment of selection was carried out for 10 generations with 20 replications each by comparing average breeding values and inbreeding coefficients among the three population schemes. Phenotypes of three traits were generated with a model comprising 36 loci, each with additive genetic effects and residuals distributed normally. Among the three population schemes, the single population scheme was definitely superior to the other two with regards to selection response and inbreeding. The multiple sub-population scheme was, however, considered to be an alternative population scheme when the difference in economic weights of the traits was small among the sub-populations, assuming moderate inbreeding depression for traits and crossbreeding. The scheme with two sub-populations had a higher genetic value than that with three subpopulations; however, the genetic values of the schemes were comparable when maternal heterosis was taken into account. The choice of population schemes may depend on the cost-sharing policy between the breeding population and the commercial population rather than just the breeding efficiency.

Vertical nest stratification and breeding success in a six mixed-species heronry in Taeseong, Chungbuk, Korea

  • Park, Shi-Ryong;Kim, Kwan-Yong;Chung, Hoon;Choi, Yu-Seong;Sung, Ha-Cheol
    • Animal cells and systems
    • /
    • v.15 no.1
    • /
    • pp.85-90
    • /
    • 2011
  • In 2001, we conducted a study to assess the effects of differential arrival times and nest-site selection on reproductive performance in a mixed-species heronry consisting of six species in Taeseong-ri, Chungbuk, Korea. We recorded the arrival dates, nest heights, clutch sizes, and brood sizes after 15-20 days of the age of the birds' chicks. The grey herons and cattle egrets arrived first and last, respectively, on the colony site. In the homogenous vegetation structure of the breeding site, the pitch pine trees (Pinus rigida) were mainly used for building nests on 48 of the 50 pine trees (96%). The breeding species vertically stratifies the nest sites according to their body size, except for the cattle egrets and black-crowned night herons that nested at sites higher than those predicted from their body size. The mean nest success rates of the six species under study were positively correlated with the mean nest heights. Our findings suggest that aggressive interspecific interactions among neighbors influence nest-site selection to enhance breeding success.

Optimal Design for Marker-assisted Gene Pyramiding in Cross Population

  • Xu, L.Y.;Zhao, F.P.;Sheng, X.H.;Ren, H.X.;Zhang, L.;Wei, C.H.;Du, L.X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.6
    • /
    • pp.772-784
    • /
    • 2012
  • Marker-assisted gene pyramiding aims to produce individuals with superior economic traits according to the optimal breeding scheme which involves selecting a series of favorite target alleles after cross of base populations and pyramiding them into a single genotype. Inspired by the science of evolutionary computation, we used the metaphor of hill-climbing to model the dynamic behavior of gene pyramiding. In consideration of the traditional cross program of animals along with the features of animal segregating populations, four types of cross programs and two types of selection strategies for gene pyramiding are performed from a practical perspective. Two population cross for pyramiding two genes (denoted II), three population cascading cross for pyramiding three genes(denoted III), four population symmetry (denoted IIII-S) and cascading cross for pyramiding four genes (denoted IIII-C), and various schemes (denoted cross program-A-E) are designed for each cross program given different levels of initial favorite allele frequencies, base population sizes and trait heritabilities. The process of gene pyramiding breeding for various schemes are simulated and compared based on the population hamming distance, average superior genotype frequencies and average phenotypic values. By simulation, the results show that the larger base population size and the higher the initial favorite allele frequency the higher the efficiency of gene pyramiding. Parents cross order is shown to be the most important factor in a cascading cross, but has no significant influence on the symmetric cross. The results also show that genotypic selection strategy is superior to phenotypic selection in accelerating gene pyramiding. Moreover, the method and corresponding software was used to compare different cross schemes and selection strategies.

Genetic Structure of the Mulberry Silkworm Population in Sri Lanka: I. Estimation of Combining Ability and Heritability

  • Lea, Ho-Zoo;Alwis, Siriani-M.de
    • Journal of Sericultural and Entomological Science
    • /
    • v.37 no.1
    • /
    • pp.10-15
    • /
    • 1995
  • Genetic characterization of Sri Lankan silkworm bivoltine population has not been at-tempted so far, since its sporadic introduction of bivoltine strains into the island, starting from the 1950's. Genetic structure of Sri Lankan population of mulberry silkworm Bombyx mori was investigated through estimation of general (GCA) and specific combining ability(SCA) and heritability(${h^2}_B$), on the economic quantitative characters from leading 8 inbreds and their 28 F1's in a half diallel cross, in an attempt to utilize the estimates in determination of future breeding methods and to predict the breeding value over the phenotypic value. It was found that the breeding population of the bivoltine silkworm in Sri Lanka has still maintained considerable amounts of additive gene action as well as nonadditive. For some time in the future, both breeding strategies of "selection without inbreeding" and also "inbreeding followed by crossing" should therefore be effective in genetic improvement of economic characters investigated. In addition, superior combiners in general and in specific F1′s were identified for each of 6 economic characters, to be immediately utilized in selection and also in cross breeding programs in Sri Lanka.

  • PDF

Development of A New Phalaenopsis Cultivar 'Little Dew' with White Miniature Type Flowers (백색 미니 다화성계 호접란 신품종 '리틀 듀' 육성)

  • Been, Chul-Gu;Kim, Jin-Ki;Kim, Soo-Kyeong
    • FLOWER RESEARCH JOURNAL
    • /
    • v.16 no.2
    • /
    • pp.149-151
    • /
    • 2008
  • A new Phalaenopsis cultivar 'Little Dew' has been developed by a cross breeding and a line selection at the Flower Breeding Research Institute, Gyeongnam ARES from 2000 to 2007. Characteristics trials for this cultivar was carried out three times from 2004 to 2006. 'Little Dew' developed from a cross between Phal. 'Timothy Christopher' and Phal. amabilis showed white miniature type flowers and a multiflora shape. It has 3~4 flower stalks and many flowers, and long life span of flowers. This new cultivar was registered for commercialization in 2007 and would be cultured well in greenhouse conditions in Korea.

Genetic signature of strong recent positive selection at interleukin-32 gene in goat

  • Asif, Akhtar Rasool;Qadri, Sumayyah;Ijaz, Nabeel;Javed, Ruheena;Ansari, Abdur Rahman;Awais, Muhammd;Younus, Muhammad;Riaz, Hasan;Du, Xiaoyong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.7
    • /
    • pp.912-919
    • /
    • 2017
  • Objective: Identification of the candidate genes that play key roles in phenotypic variations can provide new information about evolution and positive selection. Interleukin (IL)-32 is involved in many biological processes, however, its role for the immune response against various diseases in mammals is poorly understood. Therefore, the current investigation was performed for the better understanding of the molecular evolution and the positive selection of single nucleotide polymorphisms in IL-32 gene. Methods: By using fixation index ($F_{ST}$) based method, IL-32 (9375) gene was found to be outlier and under significant positive selection with the provisional combined allocation of mean heterozygosity and $F_{ST}$. Using nucleotide sequences of 11 mammalian species from National Center for Biotechnology Information database, the evolutionary selection of IL-32 gene was determined using Maximum likelihood model method, through four models (M1a, M2a, M7, and M8) in Codeml program of phylogenetic analysis by maximum liklihood. Results: IL-32 is detected under positive selection using the $F_{ST}$ simulations method. The phylogenetic tree revealed that goat IL-32 was in close resemblance with sheep IL-32. The coding nucleotide sequences were compared among 11 species and it was found that the goat IL-32 gene shared identity with sheep (96.54%), bison (91.97%), camel (58.39%), cat (56.59%), buffalo (56.50%), human (56.13%), dog (50.97%), horse (54.04%), and rabbit (53.41%) respectively. Conclusion: This study provides evidence for IL-32 gene as under significant positive selection in goat.

The Prediction Ability of Genomic Selection in the Wheat Core Collection

  • Yuna Kang;Changsoo Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.235-235
    • /
    • 2022
  • Genome selection is a promising tool for plant and animal breeding, which uses genome-wide molecular marker data to capture large and small effect quantitative trait loci and predict the genetic value of selection candidates. Genomic selection has been shown previously to have higher prediction accuracies than conventional marker-assisted selection (MAS) for quantitative traits. In this study, the prediction accuracy of 10 agricultural traits in the wheat core group with 567 points was compared. We used a cross-validation approach to train and validate prediction accuracy to evaluate the effects of training population size and training model.As for the prediction accuracy according to the model, the prediction accuracy of 0.4 or more was evaluated except for the SVN model among the 6 models (GBLUP, LASSO, BayseA, RKHS, SVN, RF) used in most all traits. For traits such as days to heading and days to maturity, the prediction accuracy was very high, over 0.8. As for the prediction accuracy according to the training group, the prediction accuracy increased as the number of training groups increased in all traits. It was confirmed that the prediction accuracy was different in the training population according to the genetic composition regardless of the number. All training models were verified through 5-fold cross-validation. To verify the prediction ability of the training population of the wheat core collection, we compared the actual phenotype and genomic estimated breeding value using 35 breeding population. In fact, out of 10 individuals with the fastest days to heading, 5 individuals were selected through genomic selection, and 6 individuals were selected through genomic selection out of the 10 individuals with the slowest days to heading. Therefore, we confirmed the possibility of selecting individuals according to traits with only the genotype for a shorter period of time through genomic selection.

  • PDF