• Title/Summary/Keyword: selectable marker

Search Result 74, Processing Time 0.03 seconds

Construction of hsf1 Knockout-mutant of a Thermotolerant Yeast Strain Saccharomyces cerevisiae KNU5377 (고온내성 연료용 알코올 효모균주 Saccharomyces cerevisiae KNU5377에서 HSF1 유전자의 변이주 구축)

  • Kim Il-Sup;Yun Hae-Sun;Choi Hye-Jin;Sohn Ho-Yong;Yu Choon-Bal;Kim Jong-Guk;Jin Ing-Nyol
    • Journal of Life Science
    • /
    • v.16 no.3 s.76
    • /
    • pp.454-458
    • /
    • 2006
  • HSF1 is the heat shock transcription factor in Saccharomyces cerevisiae. S. cerevisiae KNU5377 can ferment at high temperature such as $40^{\b{o}}C$. We have been the subjects of intense study because Hsf1p mediates gene expression not only to heat shock, but to a variety of cellular and environmental stress challenges. Basing these facts, we firstly tried to construct the hsf1 gene-deleted mutant. PCR-method for fast production of gene disruption cassette was introduced in a thermotolerant yeast S. cerevisiae KNU5377, which allowed the addition of short flanking homology region as short as 45 bp suffice to mediate homologous recombination to kanMX module. Such a cassette is composed of linking genomic DNA of target gene to the selectable marker kanMX4 that confers geneticin (G418) resistance in yeast. That module is extensively used for PCR-based gene replacement of target gene in the laboratory strains. We describe here the generation of hsf1 gene disruption construction using PCR product of selectable marker with primers that provide homology to the hsf1 gene following separation of haploid strain in wild type yeast S. cerevisiae KNU5377. Yeast deletion overview containing replace cassette module, deletion mutant construction and strain confirmation in this study used Saccharomyces Genome Deletion Project (http:://www-sequence.standard.edu/group/yeast_deletion_project). This mutant by genetic manipulation of wild type yeast KNU5377 strain will provide a good system for analyzing the research of the molecular biology underlying their physiology and metabolic process under fermentation and improvement of their fermentative properties.

Plant Regeneration and Expression of Mouse Adenosine Deaminase Gene in Transgenic Hot Pepper (Capsicum annuum L.) Plants (형질전환된 고추( Capsicum annum L.) 식물체의 Mouse Adenosine Deaminas 유전자 발현)

  • 양덕춘;이계연;유영숙;최경화;임학태
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.1
    • /
    • pp.37-41
    • /
    • 1997
  • The in vitro regeneration and genetic transformation systems in hot pepper(Capsicum annuum L.) have not been routinely available, which has been a major limiting factor in the application of new genetic manipulations. An efficient procedure to regenerate whole pepper plants and to generate transgenic plants expressing a foreign gene was established. A relatively high frequency of plant regeneration was observed when hypocotyl and cotyledon explants were cultured on MS medium supplemented with NAA 0.1 mg/L plus zeatin 2.0 mg/L or IBA 10.0 mg/L plus BAP 1.0 mg/L. Addition of AgNO$_3$5 $\mu$M to these media improved the regeneration frequency up to 8%. For plant transformation, hypocotyl and cotyledon explants of hot pepper were precultured on shoot induction media without kanamycin added for 2 days, and then cocultured with Agrobacterium tumefaciens pDY183 for 2 days. Putative transformants were obtained from selection media containing 100 mg/L kanamycin sulfate and 500 mg/L carbenicillin. Putatively selected transformants were confirmed by amplification of selectable marker genes (ADA and NPT II) by polymerase chain reacion. Successful transcripts of ADA gene were detected by Northern blot analysis. Enzyme activity of ADA was also examined by spectrophotometric analysis, and expression of ADA gene in hot pepper suggests the potential application of ADA gene as a selectable marker in plants.

  • PDF

Comparative Analysis of Resistance to Antibiotics in Populus alba$\times$P. glandulosa Transformed by nptII or hpt Gene (NPTII 및 HPT 유전자가 삽입된 현사시의 항생제에 대한 저항성 분석)

  • 이은정;노은운;박재인
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.5
    • /
    • pp.243-248
    • /
    • 2001
  • This study was peformed to find out the optimal conditions for the selection of transformed cells using already established transgenic plants. Several transgenic poplar (Populus alba$\times$P giandulosa) lines carrying npt II or hpt gene as a selectable marker were tested against kanamycin or hygromycin. Two culture explants, leaf discs and nodes, were compared regarding their sensitivity to the antibiotics. When leaf discs of untransformed control plants were cultured on callus inducing media in the presence of varying levels of kanamycin or hygromycin, only those cultured on the media containing lower than 50 mg/L kanamycin or 2 mg/L hygromycin formed callus. However, much higher concentration of kanamycin was needed to suppress the growth of axillary buds of untransformed plants. On the other hand, hygromycin at the concentration of 5 mg/L effectively suppressed shoot growth of untransformed plants. Root induction from untransformed plants could also be suppressed at the concentration of 50 mg/L kanamycin or 5 mg/L hygromycin. The transgenic plants showed resistance to 100 mg/L kanamycin or 50 mg/L hygromycin in the growth of callus, shoots, and roots. Hygromycin appeared to be more efficient in selecting untransformed cells than kanamycin.

  • PDF

Use of Paromomycin as a Selectable Marker for the Transformation of Chinese Cabbage (배추의 형질전환용 선발항생제로서 Paromomycin의 이용)

  • Cho, Mi-Ae;Min, Sung-Ran;Ko, Suck-Min;Liu, Jang-Ryol;Lee, Jun-Haeng;Choi, Pil-Son
    • Journal of Plant Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.271-276
    • /
    • 2006
  • Hypocotyl explants of Chinese cabbage (us. 'Jeong Sang' and 'Seoul') produced adventitious shoots on Murashige and Skoog (MS) basal medium supplemented with 4mg/L $AgNO_3$, 5 mg/L acetosyringone, 4 mg/L 6-benzyladenine and 3mg/L alpha-naphthaleneacetic acid (SI) after cocoultivation with strains of Agrobacterium tumefaciens (LBA4404) harboring the pCAMBIA1301 and the $_PPTN290$ containing hygromycin-resistance gene and paromomycin-resistance gene as a selectable marker genes, respectively. There was a significant difference in the frequency of transgenic plants depending on antibiotics and cultivars used. Paromomycin was better than hygromycin, and cultivar 'Jeong-sang' was higher than 'c.v. Seoul' in the frequency of transgenic plants. In particular, the highest frequency (0.70%) of transgenic plants was obtained from selection medium (SI) containing 100mg/L paromomycin in c.v., 'Jeong-sang' GUS positive response were obtained 9 plants and 3 plants from the cultivars, 'Jeong-sang' and 'Seoul', respectively. They were grown to maturity in a greenhouse and normally produced $T_1$ seeds. GUS histochemical assay for progeny $(T_1)$ revealed that the transgenes were expressed in the plant genome.

Effect of Antibiotics and Herbicide on Shoot Regeneration from Cotyledon and Hypocotyl Explants of Chinese Cabbage (항생제와 제초제가 배추 자엽 및 배축 절편체로부터의 신초 형성에 미치는 영향)

  • Kang, Byung-Kook;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.19 no.1
    • /
    • pp.17-21
    • /
    • 2001
  • To develop a selection system for regenerating plants from transformed tissues, effects of four antibiotics (kanamycin, hygromycin, carbenicillin, cefotaxime) and herbicide (phosphinotricin) on shoot regeneration from cotyledon and hypocotyl explants of Chinese cabbage (Brassica campestris L. ssp. pekinensis) were studied. For cotyledon, shoot induction was not significantly affected by kanamycin at $1mg{\cdot}L^{-1}$, but the number of shoots formed was significantly reduced at $2mg{\cdot}L^{-1}$, and no shoots were regenerated from any explants at $6mg{\cdot}L^{-1}$ or higher. Hypocotyl explants showed similar result as cotyledon. Kanamycin at $7mg{\cdot}L^{-1}$ may be adequate for selecting Chinese cabbage transformants. Hygromycin at $4mg{\cdot}L^{-1}$ or higher completely inhibited the growth and shoot regeneration of Chinese cabbage explants. Therefore, resistance gene to hygromycin may also be used as a selective marker for Chinese cabbage transformation. Carbenicillin and cefotaxime, the cephalosporin type of antibiotics, had little effect on shoot regeneration of Chinese cabbage explants. Since carbenicillin and cefotaxime have low toxicity to Chinese cabbage, they are suitable for use in tissue culture to eliminate Agrobacterium in transformation experiments after co-cultivation. Shoot regeneration from cotyledon and hypocotyl explants was significantly reduced in presence of $1mg{\cdot}L^{-1}$ phosphinotricin (PPT) and completely inhibited by $2mg{\cdot}L^{-1}$ or higher. PPT, same as antibiotics, may also be used to select transformed cells. Since Chinese cabbage is known to be recalcitrant to in vitro shoot regeneration compared to other Brassica species, even though lower levels of selectable markers result in more transformants but simultaneously allow more untransformed escapes to develop, lower levels of antibiotics and herbicides could be successfully used as a selectable marker to reduce selection pressure.

  • PDF

Molecular Approaches for Cloning of Important Higher Plant Genes (고등식물의 유용 유전자 크로닝을 위한 분자적 접근)

  • ;Ala
    • KSBB Journal
    • /
    • v.10 no.1
    • /
    • pp.89-96
    • /
    • 1995
  • An Avabidofsis thaliana gene encoding phosphoribosyl anthranilate transferase is shown to be the gene that is defective in blue fluorescent trp 1 mutant plants. This gene, named PAT1, coding region is homologous to those for the phosphoribosyl anthranilate transferase from many microorganisms. This is due to a defect in tryptophan biosynthesis that leads to an accumulation of anthranilate, a fluorescent intermediate in the tryptophan pathway. PAT1 is a single-copy gene that complements all of the visible phenotypes of the different trp1 mutants. Experiments to determine the regulation of the PAT1 gene are in progress. The wild-type PAT1 promoter and several promoter deletions of PAT1 gene have been transformed into Arabidopsis tryptophan mutants. These constructs might identify promoter elements that control this patterns. We have isolated the homozygous lines in T3 seeds and analysed the protein levels using PAT antibody and PAT protein level increased two fold in pHSl07. Finally, the potential of using PAT1 as a selectable marker or visible reporter of gene expression is being explored.

  • PDF

The Use of Glufosinate as a Selective Marker for the Transformation of Cucumber (Cucumis sativus L.) (오이의 형질전환을 위반 선발마커로서 Glufosinate의 이용)

  • Cho Mi-Ae;Song Yun-Mi;Park Yun-Ok;Ko Suck-Min;Min Sung-Ran;Liu Jang-Ryol;Choi Pil-Son
    • Journal of Plant Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.161-165
    • /
    • 2005
  • Agrobacterium tumefaciens-mediated cotyledonary explants transformation was used to produce transgenic cucumber. Cotyledonary explants of cucumber (c.v., Eunchim) were co-cultivated with strains Agrobaderium (LBA4404, GV3101, EHA101) containing the binary vector (pPTN289) carrying with CaMV 355 promoter-gus gene as reporter and NOS promoter-bar gene conferring resistance to glufosinate (herbicide Basta) as selectable marker. There was a significant difference in the transformation frequency depending Agrobacterium strains. The EHA101 of bacterial strains employed gave the maximum frequency (0.35%) for cucumber transformation. Histochemical gus and leaf painting assay showed that 15 individual lines were transgenic with the gus and bar gene. Southern blot analysis also revealed that the gus gene was successfully integrated into each genome of transgenic cucumber.

Effect of Aminoglycoside Antibiotics on in-Vitro Morphogenesis from Cultured Cells of Chrysanthemum and Tobacco

  • Teixeira da Silva, Jaime A.;Fukai, Seiichi
    • Journal of Plant Biotechnology
    • /
    • v.6 no.1
    • /
    • pp.25-37
    • /
    • 2004
  • Successful genetic transformation of plants requires non-chimeric selection of transformed tissues and their subsequent regeneration. With rare exceptions, most transformation protocols still rely heavily on antibiotics for selecting transgenic cells that contain an antibiotic-degrading selectable marker gene. Here, the morphogenic capacity of in-vitro explants of chrysanthemnum and tobacco stems and leaves (control and transgenic) changed with the addition of aminoglycoside antibiotics (AAs), In a test of 6 AAs, phytotoxicity occurred at concentrations of 10 to 25 and 50 to 100$\mu\textrm{g}$ $mL^{-1}$ in chrysanthemum and tobacco explants, respectively. Light conditions as well as explant source and size also had significant effects. The use of transverse thin cell layers (tTCLs), in conjunction with high initial AA selection levels, supported the greatest regeneration of transgenic material (adventitious shoots or callus) and the lowest number of escapes. Flow-cytometric analyses revealed no endodu-plication in chrysanthemum, even at high AA levels. However, this phenomenon was observed in tobacco calli(8C or more), even at low AA concentrations (i.e., 5 to 10 $\mu\textrm{g}$ mL$^{-1}$ ).

Improved plastid transformation efficiency in Scoparia dulcis L.

  • Kota, Srinivas;Hao, Qiang;Narra, Muralikrishna;Anumula, Vaishnavi;Rao, A.V;Hu, Zanmin;Abbagani, Sadanandam
    • Journal of Plant Biotechnology
    • /
    • v.46 no.4
    • /
    • pp.323-330
    • /
    • 2019
  • The high expression level of industrial and metabolically important proteins in plants can be achieved by plastid transformation. The CaIA vector, a Capsicum-specific vector harboring aadA (spectinomycin resistance), is a selectable marker controlled by the PsbA promoter, and the terminator is flanked by the trnA and trnI regions of the inverted repeat (IR) region of the plastid. The CaIA vector can introduce foreign genes into the IR region of the plastid genome. The biolistic method was used for chloroplast transformation in Scoparia dulcis with leaf explants followed by antibiotic selection on regeneration medium. Transplastomes were successfully screened, and the transformation efficiency of 3 transgenic lines from 25 bombarded leaf explants was determined. Transplastomic lines were evaluated by PCR and Southern blotting for the confirmation of aadA insertion and its integration into the chloroplast genome. Seeds collected from transplastomes were analyzed on spectinomycin medium with wild types to determine genetic stability. The increased chloroplast transformation efficiency (3 transplastomic lines from 25 bombarded explants) would be useful for expressing therapeutically and industrially important genes in Scoparia dulcis L.

Expression of Schwanniomyces occidentalis $\alpha-Amylase$ Gene in Saccharomyces cerevisiae var. diastaticus

  • Park, Jeong-Nam;Shin, Dong-Jun;Kim, Hee-Ok;Kim, Dong-Ho;Lee, Hwang-Hee;Chun, Soon-Bai;Bai, Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.668-671
    • /
    • 1999
  • The gene encoding Schwanniomyces occidentalis $\alpha-amylase$(AMY) was introduced into Saccharomyces cerevisiae var. diastaticus which secreted only glucoamylase, by using a linearized yeast integrating vector to develop stable strains with a capability of secreting $\alpha-amylase$and glucoamylase simultaneously. A dominant selectable marker, the geneticin(G418) resistance gene (Gt^r$), was cloned into a vector to screen wild-type diploid transformants harboring the AMY gene. The amylolytic activities of transformants were about 3-7 times higher than those of the recipient strains. When grown in nonselective media, the transformants with the linearized integrating vector containing the AMY gene exhibited almost all of the mitotic stability after 100 generations.

  • PDF