• Title/Summary/Keyword: seismological data

Search Result 26, Processing Time 0.017 seconds

Study on the Relations to Estimate Instrumental Seismic Intensities for the Moderate Earthquakes in South Korea (국내 중규모 지진에 대한 계측진도 추정식 연구)

  • Yun, Kwan-Hee;Lee, Kang-Ryel
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.6
    • /
    • pp.323-332
    • /
    • 2018
  • Recent two moderate earthquakes (2016 $M_w=5.4$ Gyeongju and 2017 $M_w=5.5$ Pohang) in Korea provided the unique chance of developing a set of relations to estimate instrumental seismic intensity in Korea by augmenting the time-history data from MMI seismic intensity regions above V to the insufficient data previously accumulated from the MMI regions limited up to IV. The MMI intensity regions of V and VI was identified by delineating the epicentral distance from the reference intensity statistics in distance derived by using the integrated MMI data obtained by combining the intensity survey results of KMA (Korea Meteorological Administration) and 'DYFI (Did You Feel It)' MMIs of USGS. The time-histories of the seismic stations from the MMI intensity regions above V were then preprocessed by applying the previously developed site-correction filters to be converted to a site-equivalent condition in a manner consistent with the previous study. The average values of the ground-motion parameters for the three ground motion parameters of PGA, PGV and BSPGA (Bracketed Summation of PGA per second for 30 seconds) were calculated for the MMI=V and VI and used to generate the dataset of the average values of the ground-motion parameters for the individual MMIs from I to VI. Based on this dataset, the linear regression analysis resulted in the following relations with proposed valid ranges of MMI. $MMI=2.36{\times}log_{10}(PGA(gal))+1.44$ ($I{\leq}MMI$$MMI=2.44{\times}log_{10}(PGV(kine))+4.86$ ($I{\leq}MMI$$MMI=2.59{\times}log_{10}(BSPGA(gal{\cdot}sec))-1.02$ ($I{\leq}MMI$

THE ROLE OF SATELLITE REMOTE SENSING TO DETECT AND ASSESS THE DAMAGE OF TSUNAMI DISASTER

  • Siripong, Absornsuda
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.827-830
    • /
    • 2006
  • The tsunami from the megathrust earthquake magnitude 9.3 on 26 December 2004 is the largest tsunami the world has known in over forty years. This tsunami destructively attacked 13 countries around Indian Ocean with at least 230,000 fatalities, displaced people 2,089,883 and 1.5 million people who lost their livelihoods. The ratio of women and children killed to men is 3 to 1. The total damage costs US$ 10.73 billion and rebuilding costs US$ 10.375 billion. The tsunami's death toll could have been drastically reduced, if the warning was disseminated quickly and effectively to the coastal dwellers along the Indian Ocean rim. With a warning system in Indian Ocean similar to that operating in the Pacific Ocean since 1965, it would have been possible to warn, evacuate and save countless lives. The best tribute we can pay to all who perished or suffered in this disaster is to heed its powerful lessons. UNESCO/IOC have put their tremendous effort on better disaster preparedness, functional early warning systems and realistic arrangements to cope with tsunami disaster. They organized ICG/IOTWS (Indian Ocean Tsunami Warning System) and the third of this meeting is held in Bali, Indonesia during $31^{st}$ July to $4^{th}$ August 2006. A US$ 53 million interim warning system using tidal gauges and undersea sensors is nearing completion in the Indian Ocean with the assistance from IOC. The tsunami warning depends strictly on an early detection of a tsunami (wave) perturbation in the ocean itself. It does not and cannot depend on seismological information alone. In the case of 26 December 2004 tsunami when the NOAA/PMEL DART (Deep-ocean Assessment and Reporting of Tsunami) system has not been deployed, the initialized input of sea surface perturbation for the MOST (Method Of Splitting Tsunami) model was from the tsunamigenic-earthquake source model. It is the first time that the satellite altimeters can detect the signal of tsunami wave in the Bay of Bengal and was used to validate the output from the MOST model in the deep ocean. In the case of Thailand, the inundation part of the MOST model was run from Sumatra 2004 for inundation mapping purposes. The medium and high resolution satellite data were used to assess the degree of the damage from Indian Ocean tsunami of 2004 with NDVI classification at 6 provinces on the Andaman seacoast of Thailand. With the tide-gauge station data, run-up surveys, bathymetry and coastal topography data and land-use classification from satellite imageries, we can use these information for coastal zone management on evacuation plan and construction code.

  • PDF

Characteristics of Tsunami Propagation through the Korean Straits and Statistical Description of Tsunami Wave Height (대한해협에서의 지진해일 전파특성과 지진해일고의 확률적 기술)

  • Cho, Yong-Jun;Lee, Jae-Il
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.4
    • /
    • pp.269-282
    • /
    • 2006
  • We numerically studied tsunami propagation characteristics through Korean Straits based on nonlinear shallow water equation, a robust wave driver of the near field tsunamis. Tsunamis are presumed to be generated by the earthquake in Tsuhima-Koto fault line. The magnitude of earthquake is chosen to be 7.5 on Richter scale, which corresponds to most plausible one around Korean peninsula. It turns out that it takes only 60 minutes for leading waves to cross Korean straits, which supports recently raised concerns at warning system might be malfunctioned due to the lack of evacuation time. We also numerically obtained the probability of tsunami inundation of various levels, usually referred as tsunami hazard, along southern coastal area of Korean Peninsula based on simple seismological and Kajiura (1963)'s hydrodynamic model due to tsunami-generative earthquake in Tsuhima-Koto fault line. Using observed data at Akita and Fukaura during Okushiri tsunami in 1993, we verified probabilistic model of tsunami height proposed in this study. We believe this inundation probability of various levels to give valuable information for the amendment of current building code of coastal disaster prevention system to tame tsunami attack.

PRELIMINARY STUDY ON THE PLATE MOTION IN KOREAN PENINSULA WITH NEW KOREAN VLBI ARRAY (우주측지 VLBI를 이용한 한반도 지각판 운동 예비 연구)

  • Kwak, Young-Hee;Sasao, Tetsuo;Cho, Jung-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.4
    • /
    • pp.345-354
    • /
    • 2006
  • Korean Peninsula has been postulated to be on the Eurasian plate(EU). On the other hand, recent seismological works and GPS researches suggest that it is on a separate plate called the Amurian plate (AM). However, the GPS results we inconsistent with each other beyond the estimated statistical errors. Moreover, the estimated plate motion parameter, which we obtained from the velocity data of six Korean GPS stations, was not well agreeing with any existing results. Therefore, independent measurements are required to distinguish those results. In near future, we will have 4 VLBI stations in Korea. This compact Korean VLBI array is capable of achieving good determination of the plate motion parameters if it is located on stable sites. We estimated the precision of the AM motion parameters with the Korean VLBT array. The results showed that the Korean VLBI array would verify the existence of the AM, as far as the observation precision of 0.2-0.5mm/yr for station velocities is achieved. Therefore, new Korean geodetic VLBI array can contribute to crustal deformation studies in East Asia.

Determination of the Hypocentral Parameters Outside The Seismic Array Using a Single Station of Three-Component (지진관측망 밖의 진원결정과 3-성분 단일 지진관측에 관해서)

  • 김소구;이승규
    • The Journal of Engineering Geology
    • /
    • v.5 no.1
    • /
    • pp.59-74
    • /
    • 1995
  • It is well known that the hypocentral parameters inside the seismic array are well determined using HYPO71PC Programs. These programs, however, do not woik well for the non-evenly distribution of the seismic stations and/or the seismic events outside the seismic array. Furthermore it is very difficult to determine the exact locations of small events in North Korea since there is no seismological data exchange between South and North Koreas. We used the polarization method of the single-station with 3-component in addition to HYPO71PC(IASPEI's Program) in order to determine the source parameters of shallow-focus earthquakes outside the seismic array. First of all, we tested the interior events of the Uisung earthquake, April 14, 1991 and the Mt. Keyryong earthquakes, Feorirary 12, 1994, and two exterior events of W. Pyoungyang earthquake, Noventer 12, 1992, and Yellow Sea earthquake, July 26, 1994 to investigate the convergence and divergence to calculate the source parameters. We have found that the source determination outside the seismic array never converges to the exact location whereas the any events inside the array quickly converge to the exact location. The seismic events outside the array such as two events Vladivostok and East Sea, and the Yellow Sea event are more accurately determined using the polarization method. Estimating the source azimuth is carried out by estimating the polarization direction of the interesting phases and the range estimate is made frum the relative timing of different phases. The polarization method is verified by fmding that the estimates of azimuths and incidence angles by the polarization method are identical with those of the synthetic seismograms of the modellings using the generator program.

  • PDF

3-Dimensional ${\mu}m$-Scale Pore Structures of Porous Earth Materials: NMR Micro-imaging Study (지구물질의 마이크로미터 단위의 삼차원 공극 구조 규명: 핵자기공명 현미영상 연구)

  • Lee, Bum-Han;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.313-324
    • /
    • 2009
  • We explore the effect of particle shape and size on 3-dimensional (3D) network and pore structure of porous earth materials composed of glass beads and silica gel using NMR micro-imaging in order to gain better insights into relationship between structure and the corresponding hydrologic and seismological properties. The 3D micro-imaging data for the model porous networks show that the specific surface area, porosity, and permeability range from 2.5 to $9.6\;mm^2/mm^3$, from 0.21 to 0.38, and from 11.6 to 892.3 D (Darcy), respectively, which are typical values for unconsolidated sands. The relationships among specific surface area, porosity, and permeability of the porous media are relatively well explained with the Kozeny equation. Cube counting fractal dimension analysis shows that fractal dimension increases from ~2.5-2.6 to 3.0 with increasing specific surface area from 2.5 to $9.6\;mm^2/mm^3$, with the data also suggesting the effect of porosity. Specific surface area, porosity, permeability, and cube counting fractal dimension for the natural mongolian sandstone are $0.33\;mm^2/mm^3$, 0.017, 30.9 mD, and 1.59, respectively. The current results highlight that NMR micro-imaging, together with detailed statistical analyses can be useful to characterize 3D pore structures of various porous earth materials and be potentially effective in accounting for transport properties and seismic wave velocity and attenuation of diverse porous media in earth crust and interiors.