• Title/Summary/Keyword: seismogenic fault

Search Result 5, Processing Time 0.02 seconds

PROBABILISTIC APPROACH ON SEISMOGENIC POTENTIAL OF A FAULT

  • Chang, Chun-Joong
    • Nuclear Engineering and Technology
    • /
    • v.43 no.5
    • /
    • pp.437-446
    • /
    • 2011
  • Siting criteria for nuclear power plants require that faults be characterized as to their potential for generating earthquakes, or that the absence of the potential for these occurrences be demonstrated. Because the definition of active faults in Korea has been applied by the deterministic method, which depends on the numerical age of fault movement, the possibility of inherent uncertainties exists in determining the maximum earthquake from the fault sources for seismic design. In an attempt to overcome these problems this study suggests new criteria and a probabilistic quantitative diagnostic procedure that could estimate whether a fault is capable of generating earthquakes in the near future.

Probabilistic Approach for Evaluation of the Fault Activity (확률론적 방법에 의한 단층의 활동도 평가)

  • Chang, Chun-Joong;Choi, Weon-Hack;Yun, Kwan-Hee;Park, Dong-Hee;Im, Chang-Bock
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.33-40
    • /
    • 2006
  • Since early 1990's, several Quaternary faults have been found in the southeastern part of the Korean peninsula with reference to fault activity. Because some of these faults could be considered a capable fault, it is a very delicate matter, which need to be deal with carefully in assessing the seismic hazard. In determining whether or not a faults are capable, because of the low rate of seismicity and insufficient relationship between instrumental macro-seismicity and fault, there has been considerable debate among geologists and geophysicists in Korea. In this study, we discuss the criteria and probabilistic approaches that are used to assess whether or not a fault is seismogenic. And, we preliminarily also suggest the probability of fault activity from the spatial association between faults and earthquake epicenters, fault slip and tectonic stress, and geological evidence for multiple episodes of reactivation.

  • PDF

Relation of Intensity, Fault Plane Solutions and Fault of the January 20, 2007 Odaesan Earthquake (ML=4.8) (2007년 1월 20일 오대산 지진(ML=4.8)의 진도, 단층면해 및 단층과의 관계)

  • Kyung, Jai-Bok;Huh, Seo-Yun;Do, Ji-Yong;Cho, Deok-Rae
    • Journal of the Korean earth science society
    • /
    • v.28 no.2
    • /
    • pp.202-213
    • /
    • 2007
  • The Odaesan earthquake $(M_L=4.8)$ occurred near Mt. Odae, Jinbu-Myon, Pyongchang-Gun, Kangwon Province on January 20, 2007. It has a shallow focal depth about 10 km. Its felt area covers most of the southern peninsula except some southern and western inland area. The maximum MM intensity was VI in the areas including Jinbu, Doam, Kangreung, Jumunjin, and Pyongchang. In these areas, there was a very strong shaking that caused several cracks on the walls of buildings and houses, slates falling off the roof, tiles being off the wall, things falling off the desk, and rock falling from the mountains. In order to get fault plane solutions, grid searches were performed by fitting distributions of P-wave first-motion polarities and SH/P amplitude ratios for each event. The results showed that the main shock represented right-lateral strike-slip sense and two aftershocks, reverse sense. It seems that the seismogenic fault may be the NNE-SSW trending Weoljeongsa fault near the epicenter based on the distribution of epicenters (foreshock, main shock, and aftershocks), damage area, and fault plane solution. The distribution of the epicenters indicates that the length of the subsurface rupture is estimated to be about 2 km.

The topographic effect of ground motion based on Spectral Element Method

  • Liu, Xinrong;Jin, Meihai;Li, Dongliang;Hu, Yuanxin;Song, Jianxue
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.411-429
    • /
    • 2017
  • A Spectral Element Method for 3D seismic wave propagation simulation is derived based on the three-dimensional fluctuating elastic dynamic equation. Considering the 3D real terrain and the attenuation characteristics of the medium, the topographic effect of Wenchuan earthquake is simulated by using the Spectral Element Method (SEM) algorithm and the ASTER DEM model. Results show that the high PGA (peak ground acceleration) region was distributed along the peak and the slope side away from the epicenter in the epicenter area. The overall distribution direction of high PGA and high PGV (peak ground velocity) region is parallel to the direction of the seismogenic fault. In the epicenter of the earthquake, the ground motion is to some extent amplified under the influence of the terrain. The amplification effect of the terrain on PGA is complicated. It does not exactly lead to amplification of PGA at the ridge and the summit or attenuation of PGA in the valley.

Seismic Performance of Bridge with Pile Bent Structures in Soft Ground against Near-Fault Ground Motions (연약지반에 건설된 단일형 현장타설말뚝 교량의 근단층지반운동에 대한 내진성능)

  • Sun, Chang-Ho;An, Sung-Min;Kim, Jung-Han;Kim, Ick-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.137-144
    • /
    • 2019
  • For the structures near the seismogenic fault, the evaluation of seismic performance against near-fault ground motions is important as well as for design ground motions. In this study, characteristics of seismic behaviors and seismic performance of the pile-bent bridge constructed on the thick soft soil site with various weak soil layers were analyzed. The input ground motions were synthesized by the directivity pulse parameters for intra-plate regions. The ground motion acceleration histories of each layer were obtained by one-dimensional site response analysis. Each soil layer was modeled by equivalent linear springs, and multi-support excitations with different input ground motions at each soil spring were applied for nonlinear seismic analyses. The analysis result by the near-fault ground motions and ground motions matched to design spectra were compared. In case of the near fault ground motion input, the bridge behaved within the elastic range but the location of the maximum moment occurred was different from the result of design ground motion input.